Combining Generative and Discriminative Models for Hybrid Inference

Víctor Garcia Satorras

Zeynep Akata

Max Welling

Given a set of observations \mathbf{y} We want to infer the states of a process \mathbf{x} $\hat{\mathbf{x}} = \operatorname*{argmax} p(\mathbf{x}, \mathbf{y})$

Given a set of observations

 \mathbf{y}

We want to **infer** the states of a process

Given a set of observations

y

We want to **infer** the states of a process

Given a set of observations

У

We want to **infer** the states of a process

Given a set of observations

 \mathbf{y}

We want to **infer** the states of a process

Given a set of observations

 \mathbf{y}

 \mathbf{X}

We want to **infer** the states of a process

Given a set of observations

 \mathbf{y}

We want to **infer** the states of a process

 \mathbf{X}

$$\hat{\mathbf{x}} = \operatorname*{argmax}_{\mathbf{x}} p(\mathbf{x}, \mathbf{y})$$

Given a set of observations

 \mathbf{y}

We want to **infer** the states of a process

 ${f X}$

$$\hat{\mathbf{x}} = \operatorname*{argmax}_{\mathbf{x}} p(\mathbf{x}, \mathbf{y})$$

Given a set of observations

 \mathbf{y}

We want to **infer** the states of a process

 \mathbf{X}

Given a set of observations

y

We want to **infer** the states of a process

 \mathbf{X}

$$\hat{\mathbf{x}} = \operatorname*{argmax}_{\mathbf{x}} p(\mathbf{x}, \mathbf{y})$$

- Data efficient
- Interpretable
- Better generalization (high bias)

- Data efficient
- Interpretable
- Better generalization (high bias)

- More flexible
- Accurate (large amounts of data)

Graphical Inference (e.g. Kalman Filter)

- Based on prior knowledge

Graphical Inference (e.g. Kalman Filter)

- Based on prior knowledge

Graph Neural Network messages

- Learned from data

$$x_k^{(i+1)} = x_k^{(i)} + \gamma(M_k^{(i)})$$

Hybrid model | Adding GNN messages

$$x_k^{(i+1)} = x_k^{(i)} + \gamma (M_k^{(i)} + \epsilon_k^{(i+1)})$$

Hybrid model | Adding GNN messages

Experiments | Lorenz attractor

Experiments | Lorenz attractor

Poster #99, Session 3

Combining Generative and Discriminative Models for Hybrid Inference

Víctor Garcia Satorras

Zeynep Akata

Max Welling

