

Counting the Optimal Solutions in Graphical Models

Radu Marinescu

IBM Research

Rina Dechter University of California, Irvine

IBM Research

Motivation and Contribution

- Combinatorial optimization in graphical models
 - Solution that optimizes a global objective function

$$x^* = \operatorname{argmin}_x \sum_{\alpha} f_{\alpha}(x_{\alpha})$$

- NP-hard: exponentially many terms
- #opt: count the optimal solutions
 - Naive brute-force approaches based on enumeration
 - Infeasible in practice if many optimal solutions
 - Introduce efficient variable elimination and search based algorithms that do not rely on enumeration

#opt

IBM Research

- Formally: $|S|, S = \{x \mid f(x) = V^*, V^* = \min_x \sum f_\alpha(x_\alpha)\}$
 - Computed efficiently, without enumeration $~^{lpha}$
- The #opt semiring: $\mathcal{A} = \langle \mathbb{R}^2, \otimes, \oplus \rangle$ $(v, c) \in \mathbb{R}^2$ $(v_1, c_1) \otimes (v_2, c_2) = (v_1 + v_2, c_1 \cdot c_2)$ count $(v_1, c_1) \oplus (v_2, c_2) = \begin{cases} (v_1, c_1 + c_2), & \text{if } v_1 = v_2 \\ (v_1, c_1), & \text{if } v_1 < v_2 \\ (v_2, c_2), & \text{if } v_1 > v_2 \end{cases}$

 \otimes - combination operator \oplus - marginalization operator

Property: \otimes distributes over \oplus

Exact Algorithms for #opt

- Variable Elimination (VE)
 - Eliminate variables following an ordering
 - Local computations facilitated by the distributivity property of the semiring
 - **Complexity**: O(n exp(w*)) w* treewidth
- AND/OR Branch-and-Bound Search (AOBB)
 - Explore the context-minimal AND/OR search graph
 - Heuristic evaluation function to prune unpromising regions of the search space
 - Complexity: O(n exp(w*)) w* treewidth
 - In practice, more efficient due to pruning