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Black-box optimization
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Problem: Maximize an unknown
utility function f: D — R by

@ Sequentially querying f at
inputs x1,xs,...,x7r and

@ Observing noisy function
evaluations: y; = f(z:) + €&

Want: Low cumulative regret: i (f(:r*) — f(:ct)>

t=1



Heavy-tailed noise
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eg. Student's-t, Pareto, Cauchy etc.

Motivation:

@ Significant chance of very
high/low values

@ Corrupted measurements
@ Bursty traffic flow distributions

@ Price fluctuations in financial
and insurance data

@ Existing works assume light-tailed noise (e.g. Srinivas et. al '11,

Hernandez-Lobato et al.’14, ...)

@ Question: Bayesian optimization algorithms with guarantees under

heavy-tailed noise?



Algorithm 1: Truncated GP-UCB (TGP-UCB)

Unknown function f modeled by a Gaussian Process f ~ GP(0, k)
At round t:
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Algorithm 1: Truncated GP-UCB (TGP-UCB)

Unknown function f modeled by a Gaussian Process f ~ GP(0, k)
At round t:

© Choose the query point z; using current GP posterior and a suitable
parameter [3;:

@y = argmax fiy—1(x) + Broi—1(x)
x€D

@ Truncate the observed payoff y; using a suitable threshold b;:
Ut = yelyy, <o,
© Update GP posterior (¢, 0¢) with new observation (x¢, §:):

pe(@) = k(@) (Ko + M) g, 9"
o2(z) = k(z,z) — ke(2)T (K + M) 7Yy (2)



Regret bounds

Assumption on heavy-tailed payoffs:

E [Jye|"t*] < 400 for a€(0,1]

Algorithm Payoff Regret

GP-UCB (Srinivas et. al) | sub-Gaussian O (fyTT%)

TGP-UCB (this paper) Heavy-tailed O(VTTQ(%TL))

ea=1 = RegretO(T%>
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Regret bounds

Assumption on heavy-tailed payoffs:

E [Jye|"t*] < 400 for a€(0,1]

Algorithm Payoff Regret
GP-UCB (Srinivas et. al) | sub-Gaussian O <7TT%>

TGP-UCB (this paper) | Heavy-tailed O(yTT%>

@ a=1 = Regret O (T%)
@ We also give a 2 (TH%) regret lower bound for any algorithm

. . A .
@ Question: Can we achieve O (T 1+a> regret scaling?

@ Ans: YES
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Algorithm 2: Adaptively Truncated Approximate GP-UCB

Idea: UCB with Kernel approximation + Feature adaptive truncation:

Ty = argmax ¢ p fir—1(x) + Bio¢—1(z)

Kernel approximation:
Hj.

Compute:
© Vi =3y dr(as)de(xs)” + M

(m¢ rows and m; columns)

R™

k(z,y) = ¢u(x) ¢ (y)

Nystrém approx.
_1
o U=V, *[pe(x1),...,0¢(x¢)]
(my rows and ¢ columns)

Fourier features approx.



Algorithm 2: Adaptively Truncated Approximate GP-UCB

Idea: UCB with Kernel approximation + Feature adaptive truncation:

xy = argmax, ¢ p fie—1 () + Bedr—1(x)

Kernel approximation:
Hj.

Compute:

° V;f = Zi:l ¢t(xs)¢t(xs)T+)‘I
(m¢ rows and m; columns)

o Uy =V, *[¢u(z1),. .., be(x1)]
(m¢ rows and t columns)

Ui U2 Uit Yy Y2 - Yt Hadamard
U21 U22 U2t Yy Y2 - Yt

o product

Um1  Umy2 -0 Umyt Yy Y2 o Yt
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Idea: UCB with Kernel approximation + Feature adaptive truncation:
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Feature adaptive truncation:

712 = U12Y2 | <b,
Find row sums
_Z N T1,72y« sy Tmy,
u11Y1 @@ Cee Uil rin (T2 O T
U21Y1 U2Yy2 - U2tYt T21 T22 v T2t
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Algorithm 2: Adaptively Truncated Approximate GP-UCB

Idea: UCB with Kernel approximation + Feature adaptive truncation:

xy = argmax, ¢ p fie—1 () + Bedr—1(x)

Kernel approximation:
Hj.

Compute:
© Vi =3y drlas)de(ws)” + M

(m¢ rows and m; columns)

R™

k(z,y) = ¢u(x) ¢ (y)

Nystrém approx.

o Uy =V, *[¢u(z1),. .., be(x1)]
(m¢ rows and t columns)

Fourier features approx.

Approximate posterior GP:
[Lt (x) = ¢t (x)T‘/t_l/Q[rl, ey rmt]T
57 (x) = k(z,2) = ¢u(m)" de(2) + A ()" Vi e ()

¢ . .
where r; = 30 UisYsLiu,y. |<b, (U is the i™ row of Uy)
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