

Gautam Singh*1

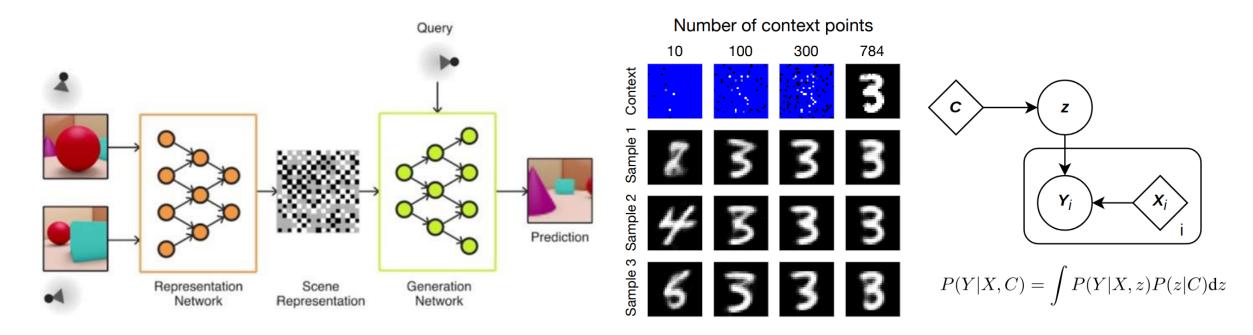
Jaesik Yoon*2

Youngsung Son³

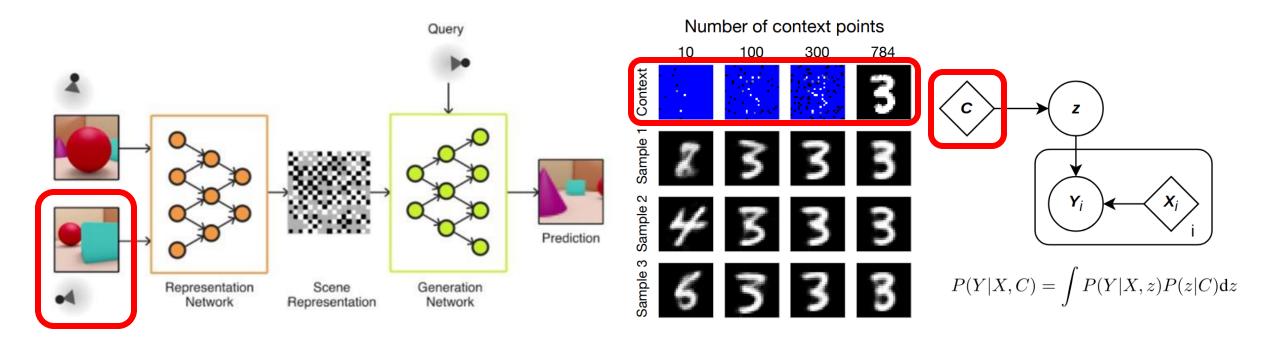
Sungjin Ahn¹

¹Rutgers University ²SAP ³ETRI

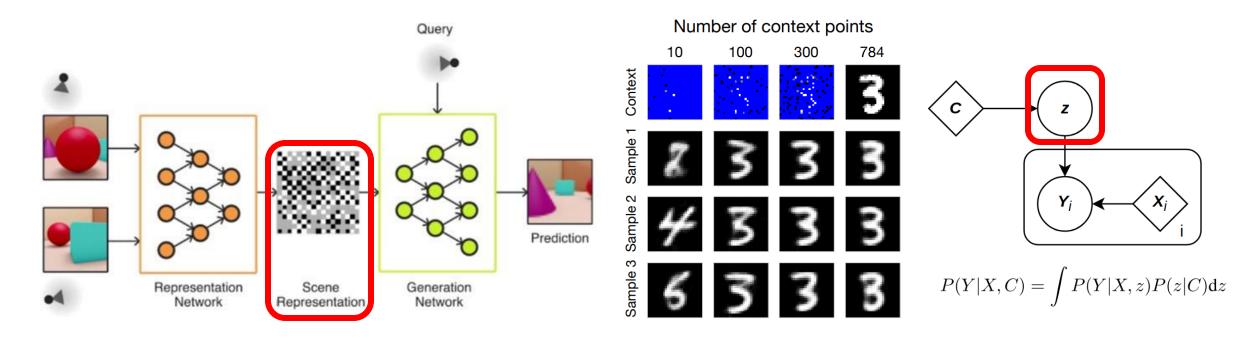
*Equal Contribution



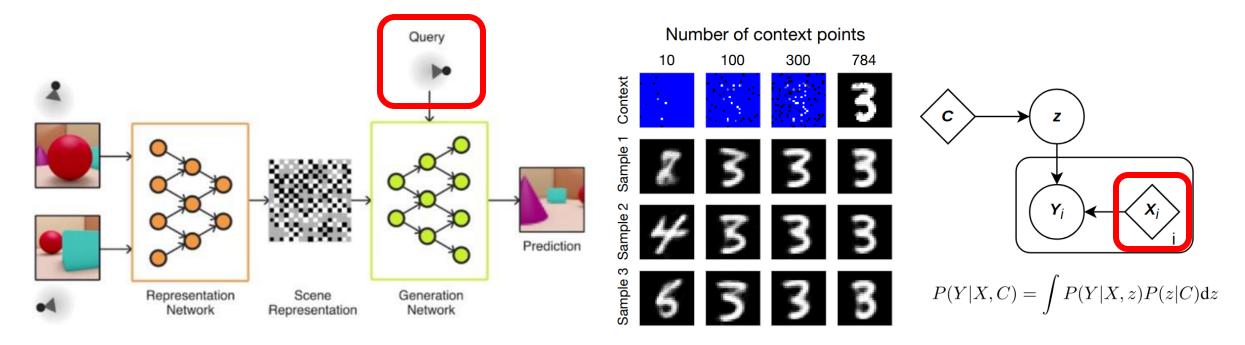
"What if the stochastic process also had some underlying temporal dynamics?"



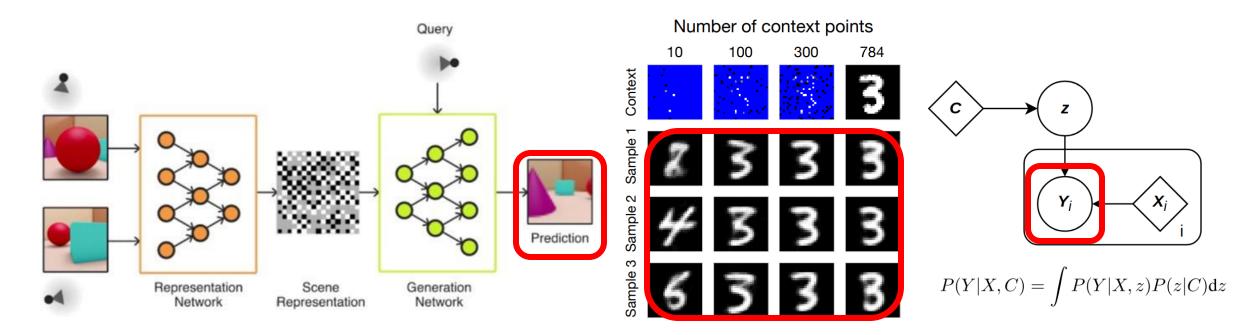
"What if the stochastic process also had some underlying temporal dynamics?"



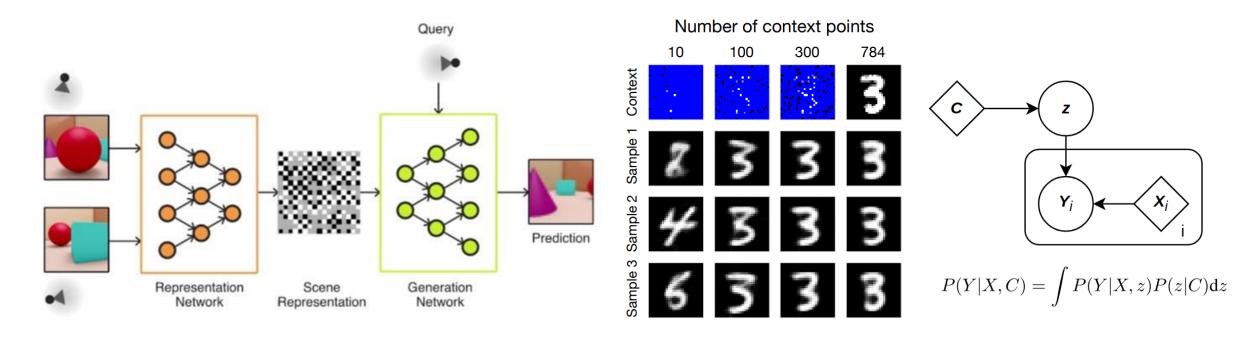
"What if the stochastic process also had some underlying temporal dynamics?"



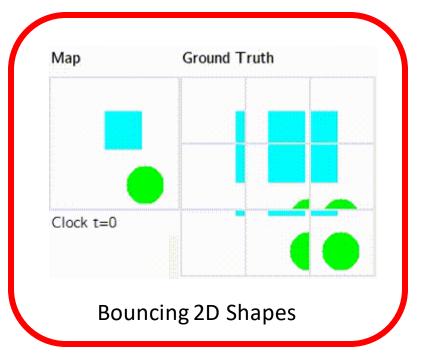
"What if the stochastic process also had some underlying temporal dynamics?"

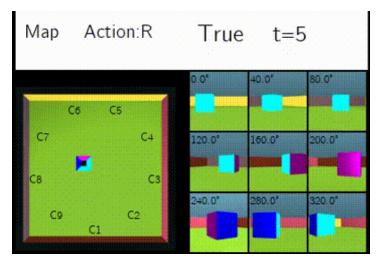


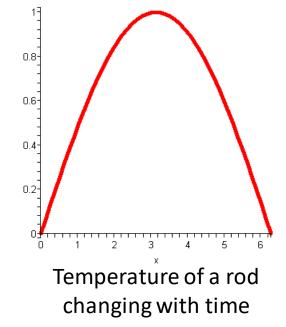
"What if the stochastic process also had some underlying temporal dynamics?"

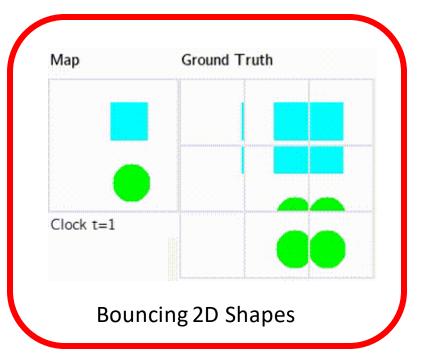


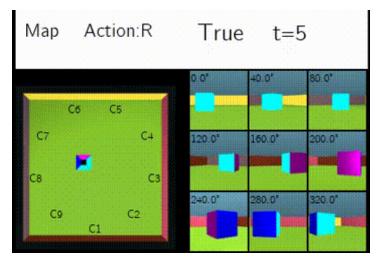
"What if the stochastic process also had some underlying temporal dynamics?"

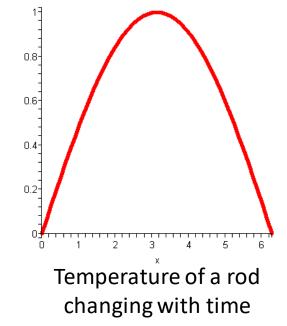


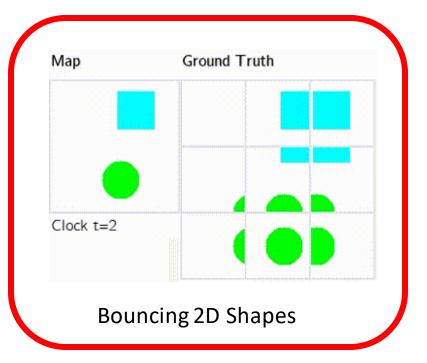


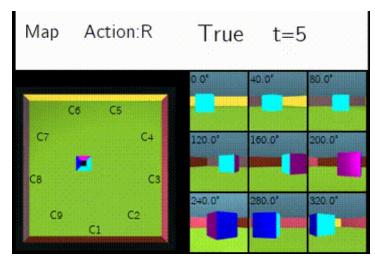


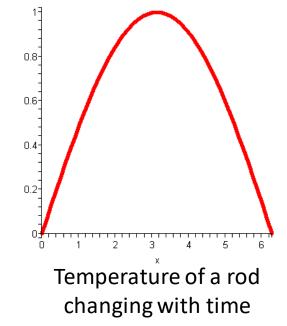


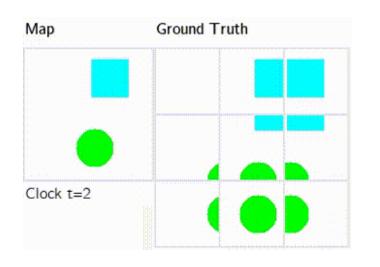




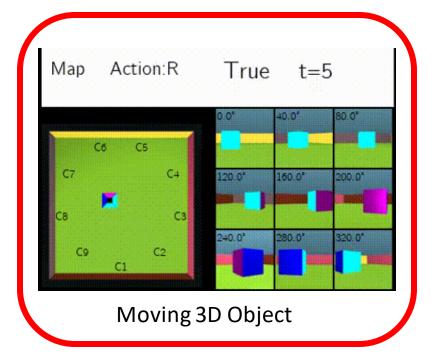


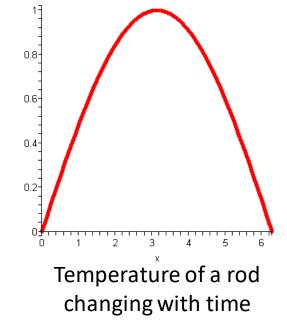


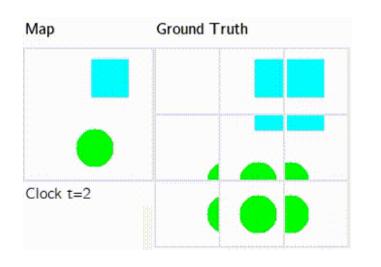




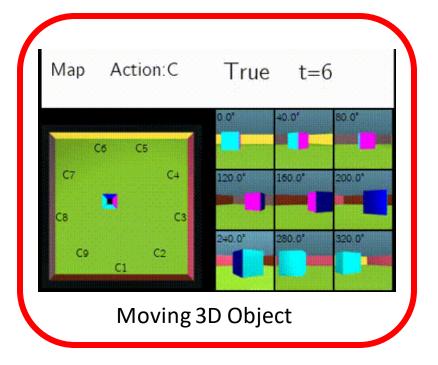
Bouncing 2D Shapes

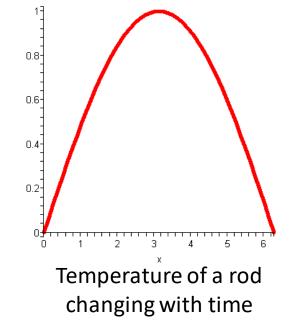


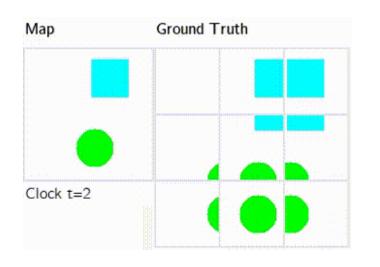




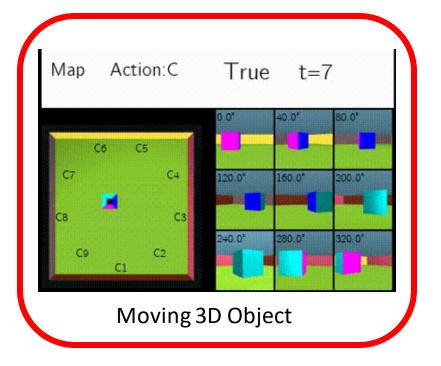
Bouncing 2D Shapes

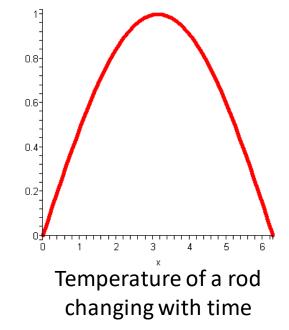


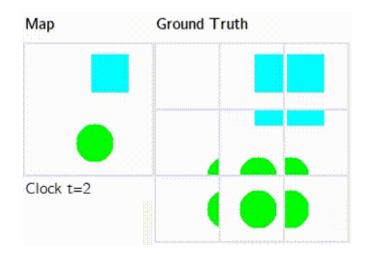




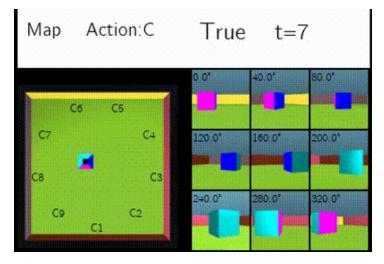
Bouncing 2D Shapes

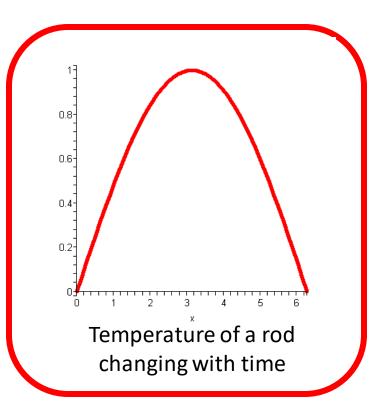


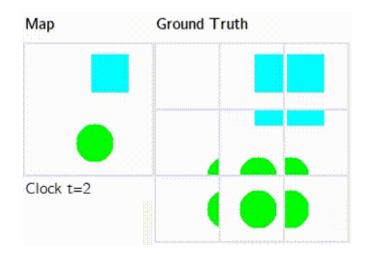




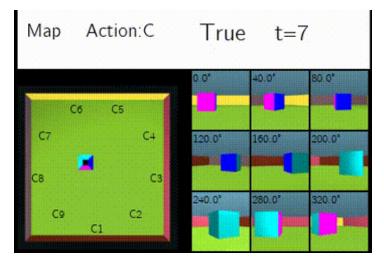
Bouncing 2D Shapes

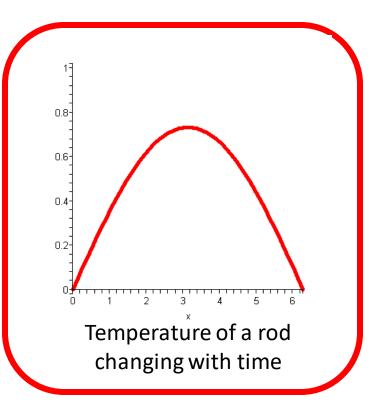


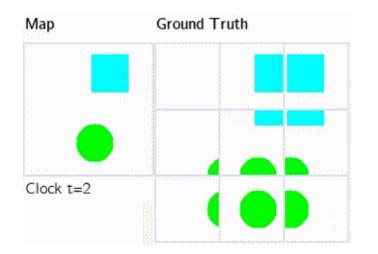




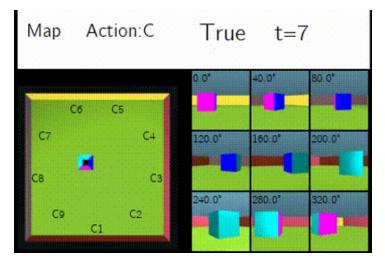
Bouncing 2D Shapes

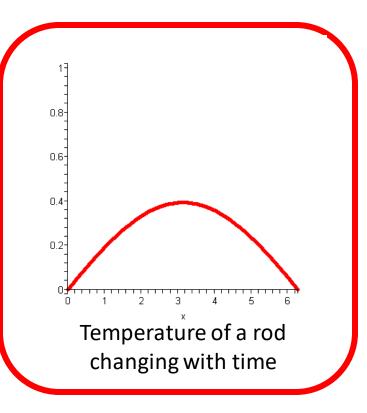




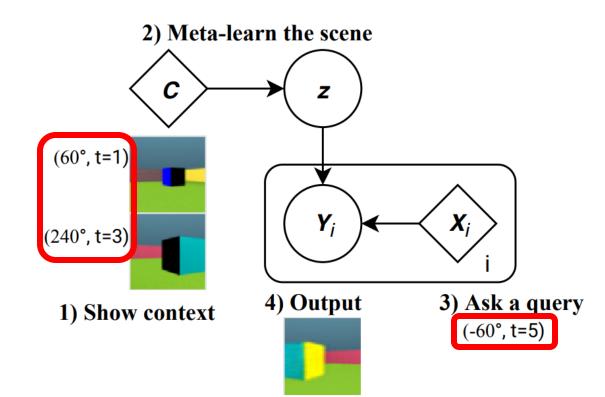


Bouncing 2D Shapes



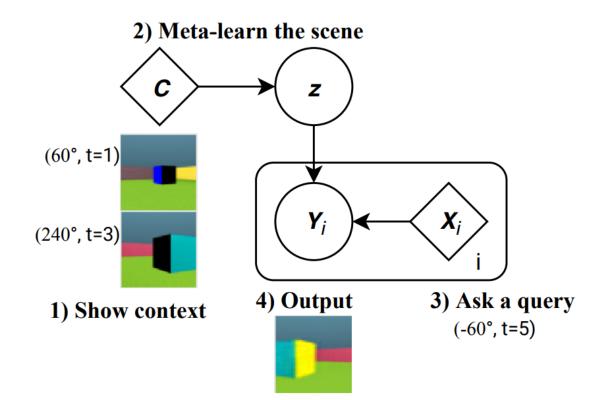


Simple Extension of the Baselines



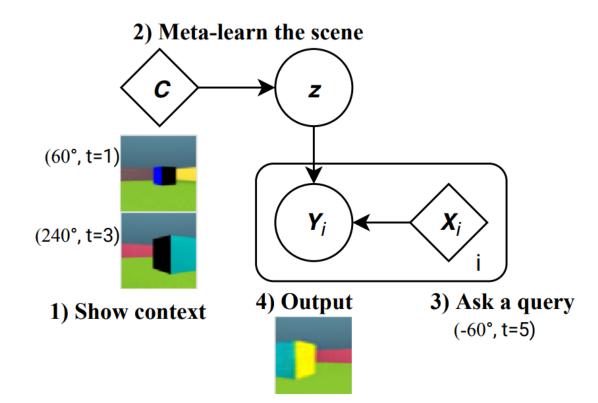
- Append time *t* to the query in Neural Processes or GQN.
- Our findings show that this does not work well *since it does not model time explicitly.*
 - Poor generation quality
 - Cannot generalize to long timehorizons

Simple Extension of the Baselines

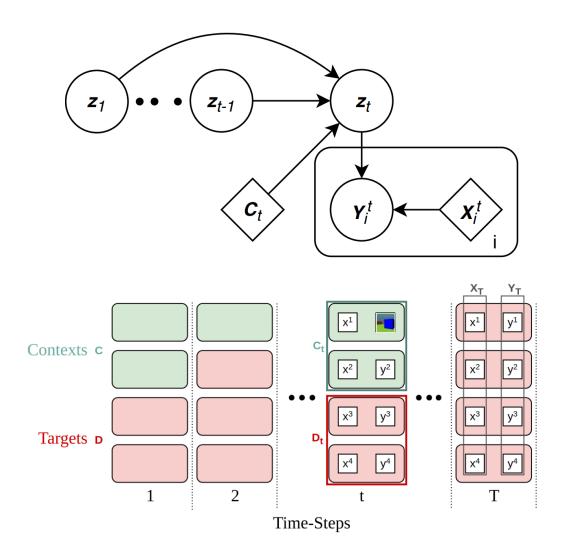


- Append time *t* to the query in Neural Processes or GQN.
- Our findings show that this does not work well *since it does not model time explicitly.*
 - Poor generation quality
 - Cannot generalize to long timehorizons

Simple Extension of the Baselines

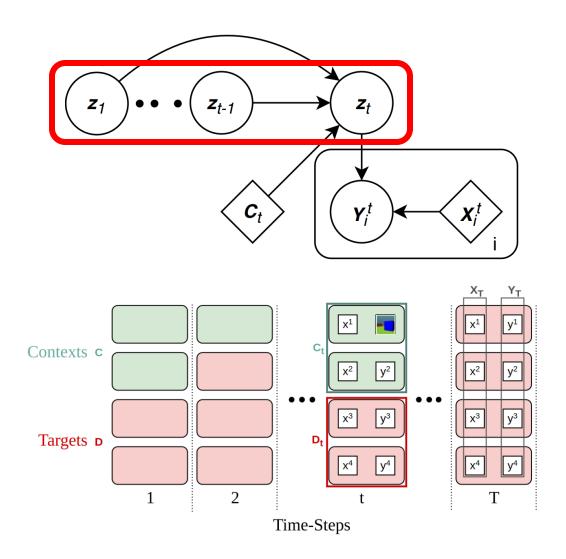


- Append time *t* to the query in Neural Processes or GQN.
- Our findings show that this does not work well *since it does not model time explicitly.*
 - Poor generation quality
 - Cannot generalize to long timehorizons



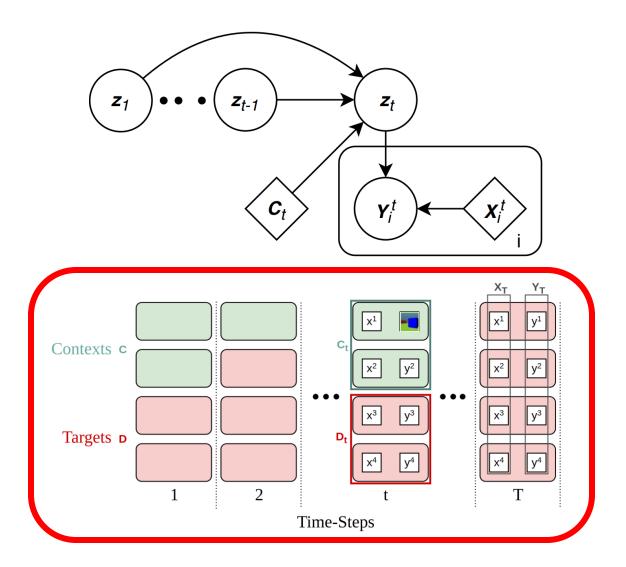
$$P(Y, Z|X, C) = \prod_{t=1}^{T} P(Y_t|X_t, z_t) P(z_t|z_{< t}, C_t)$$

Meta-Transfer Learning.



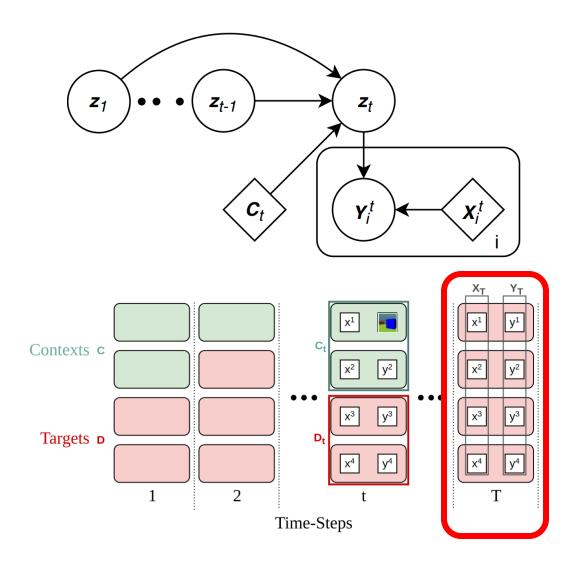
$$P(Y, Z|X, C) = \prod_{t=1}^{T} P(Y_t|X_t, z_t) P(z_t|z_{< t}, C_t)$$

Meta-Transfer Learning.



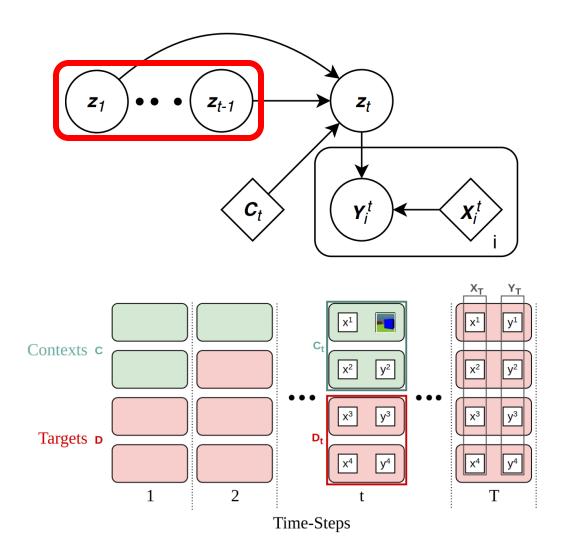
$$P(Y, Z|X, C) = \prod_{t=1}^{T} P(Y_t|X_t, z_t) P(z_t|z_{< t}, C_t)$$

Meta-Transfer Learning.



$$P(Y, Z|X, C) = \prod_{t=1}^{T} P(Y_t|X_t, z_t) P(z_t|z_{< t}, C_t)$$

Meta-Transfer Learning.



$$P(Y, Z|X, C) = \prod_{t=1}^{T} P(Y_t|X_t, z_t) P(z_t|z_{$$

Meta-Transfer Learning.

"We need not learn everything from current context but only use it to update our prior hypothesis."

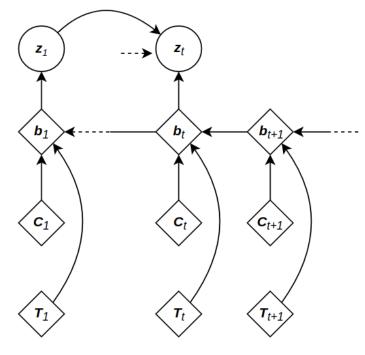
Inference and Learning

• We train the model via a variational approximation.

$$P(Z|C,D) \approx \prod_{t=1}^{T} Q_{\phi}(z_t|z_{< t}, C, D)$$

• This leads to the following ELBO training objective.

$$\begin{split} \log P(Y|X,C) &\geq \mathcal{L}_{\mathsf{SNP}}(\theta,\phi) \\ &= \sum_{t=1}^{T} \mathbb{E}_{Q_{\phi}(z_t|\mathcal{V})} \left[\log P_{\theta}(Y_t|X_t,z_t) \right] \\ &- \mathbb{E}_{Q_{\phi}(z_{< t}|\mathcal{V})} \left[\mathbb{KL}(Q_{\phi}(z_t|z_{< t},\mathcal{V}) \parallel P_{\theta}(z_t|z_{< t},C_t)) \right] \end{split}$$



A realization of the inference model using a backward RNN.

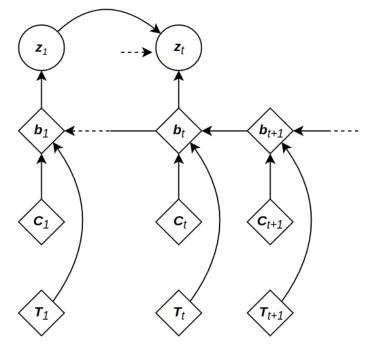
Inference and Learning

• We train the model via a variational approximation.

$$P(Z|C,D) \approx \prod_{t=1}^{T} Q_{\phi}(z_t|z_{< t}, C, D)$$

• This leads to the following ELBO training objective.

$$\begin{split} \log P(Y|X,C) &\geq \mathcal{L}_{\mathsf{SNP}}(\theta,\phi) \\ &= \sum_{t=1}^{T} \mathbb{E}_{Q_{\phi}(z_t|\mathcal{V})} \left[\log P_{\theta}(Y_t|X_t,z_t) \right] \\ &- \mathbb{E}_{Q_{\phi}(z_{< t}|\mathcal{V})} \left[\mathbb{KL}(Q_{\phi}(z_t|z_{< t},\mathcal{V}) \parallel P_{\theta}(z_t|z_{< t},C_t)) \right] \end{split}$$



A realization of the inference model using a backward RNN.

Inference and Learning

• We train the model via a variational approximation.

$$P(Z|C,D) \approx \prod_{t=1}^{T} Q_{\phi}(z_t|z_{< t}, C, D)$$

• This leads to the following ELBO training objective.

$$\begin{split} \log P(Y|X,C) &\geq \mathcal{L}_{\mathsf{SNP}}(\theta,\phi) \\ &= \sum_{t=1}^{T} \mathbb{E}_{Q_{\phi}(z_t|\mathcal{V})} \left[\log P_{\theta}(Y_t|X_t,z_t) \right] \\ &- \mathbb{E}_{Q_{\phi}(z_{< t}|\mathcal{V})} \left[\mathbb{KL}(Q_{\phi}(z_t|z_{< t},\mathcal{V}) \parallel P_{\theta}(z_t|z_{< t},C_t)) \right] \end{split}$$

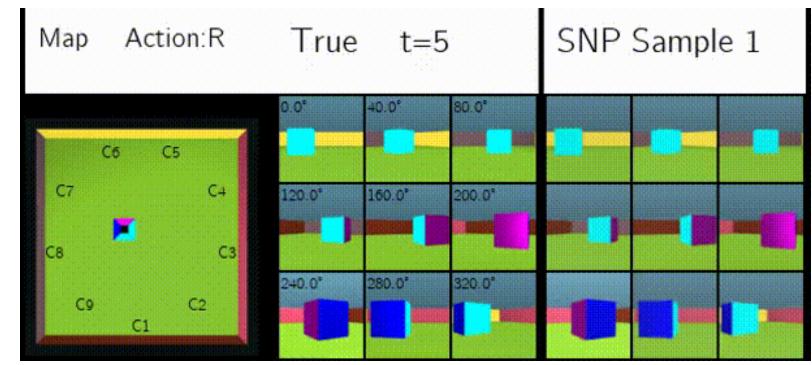
 z_1 z_t b_1 b_t b_{t+1} c_1 c_t c_{t+1} T_1 T_t T_{t+1}

A realization of the inference model using a backward RNN.

Demonstrations

Color Cube

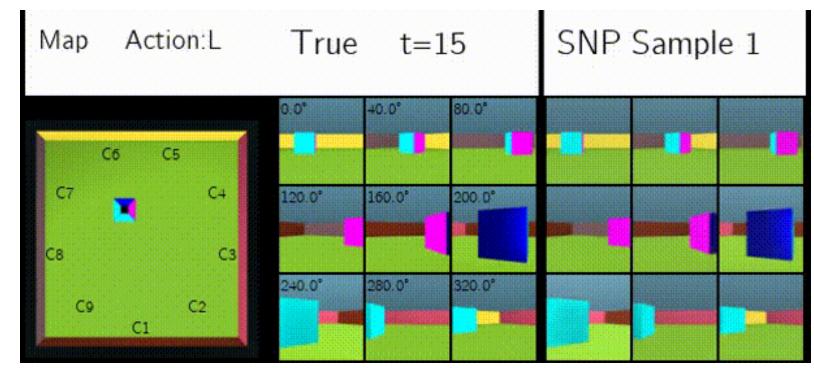
Context is shown in the first 5 time-steps and the remaining are predicted purely on the command of the actions provided to the object. The actions can be translation (L, R, U, D) or rotations (Clockwise, A-Clockwise)



1st time-step without context

Color Cube

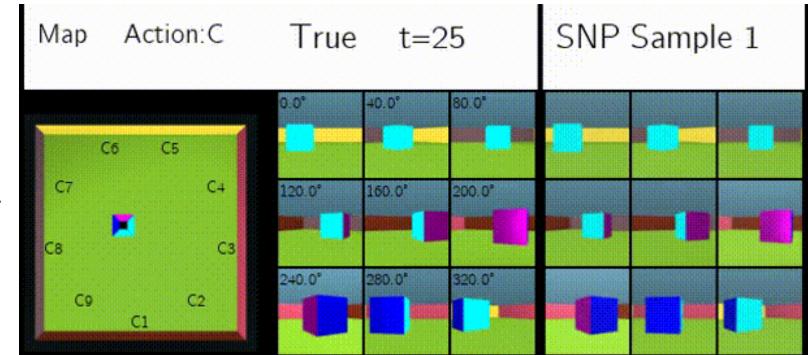
Context is shown in the first 5 time-steps and the remaining are predicted purely on the command of the actions provided to the object. The actions can be translation (L, R, U, D) or rotations (Clockwise, A-Clockwise)



10th time-step without context

Color Cube

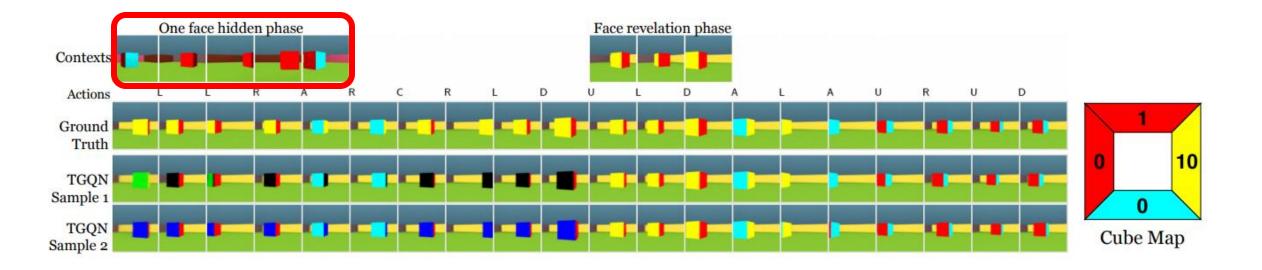
Context is shown in the first 5 time-steps and the remaining are predicted purely on the command of the actions provided to the object. The actions can be translation (L, R, U, D) or rotations (Clockwise, A-Clockwise)



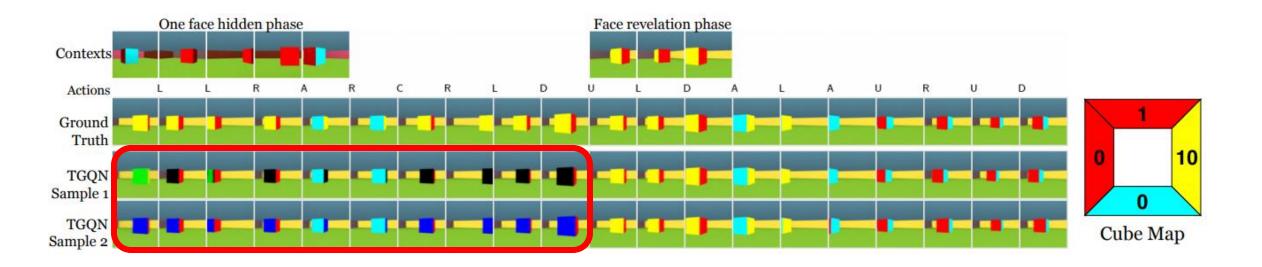
20th time-step without context.

Beyond training time horizon

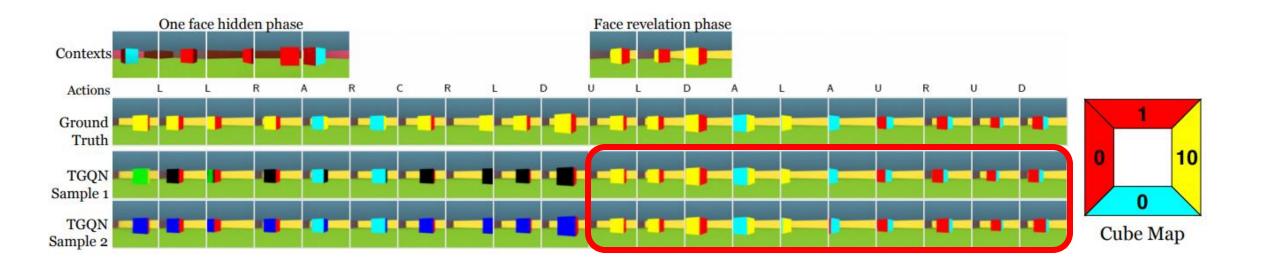
Meta-Transfer Learning



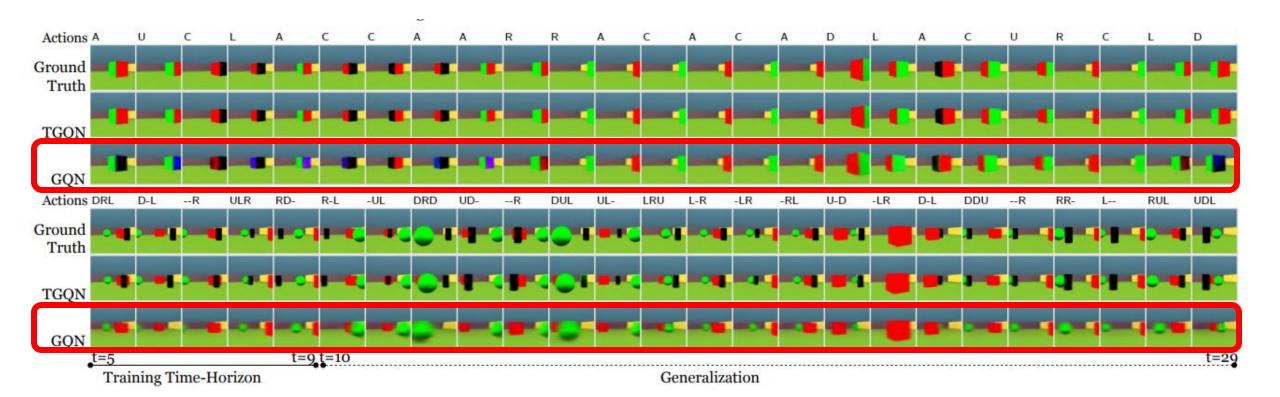
Meta-Transfer Learning



Meta-Transfer Learning

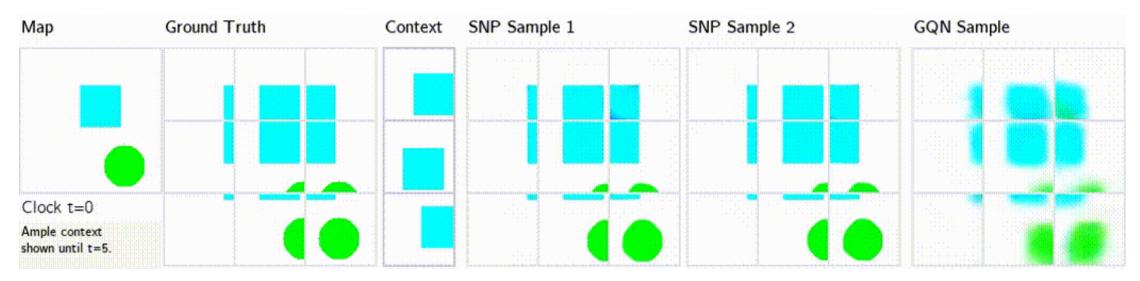


Comparing against GQN



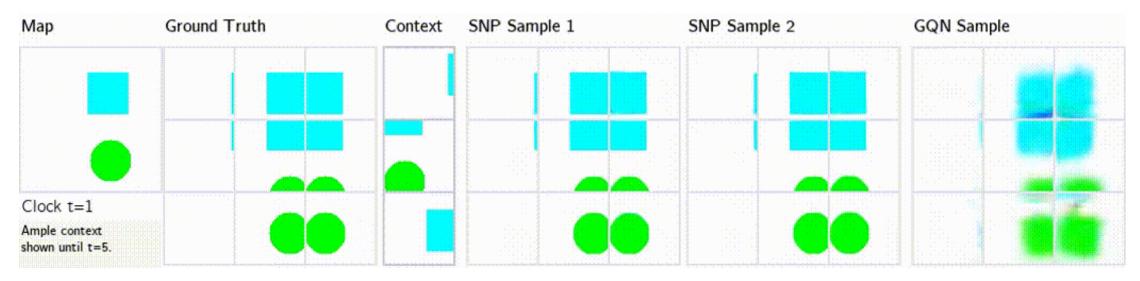
Color Shapes : Tracking and Updating

Context is shown intermittently and we allow the predictions to diverge from the true. On seeing the context, we observe that the belief about the object is updated.

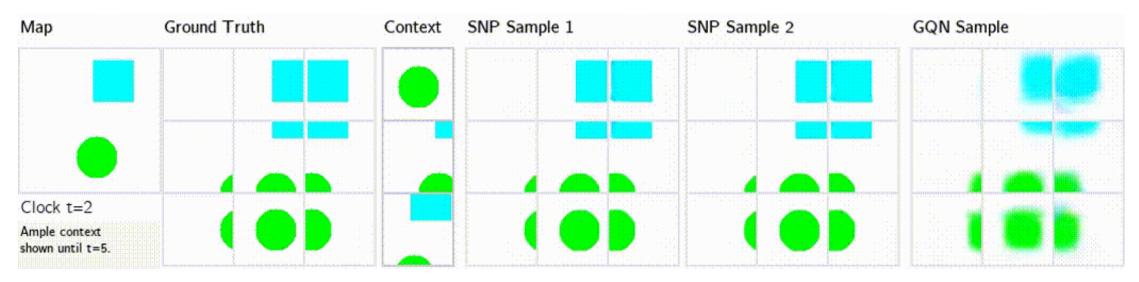


Context is being shown.

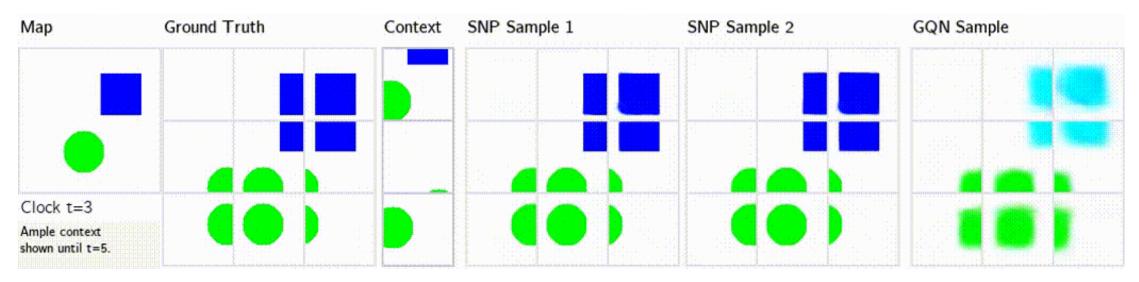
Context is shown intermittently and we allow the predictions to diverge from the true. On seeing the context, we observe that the belief about the object is updated.



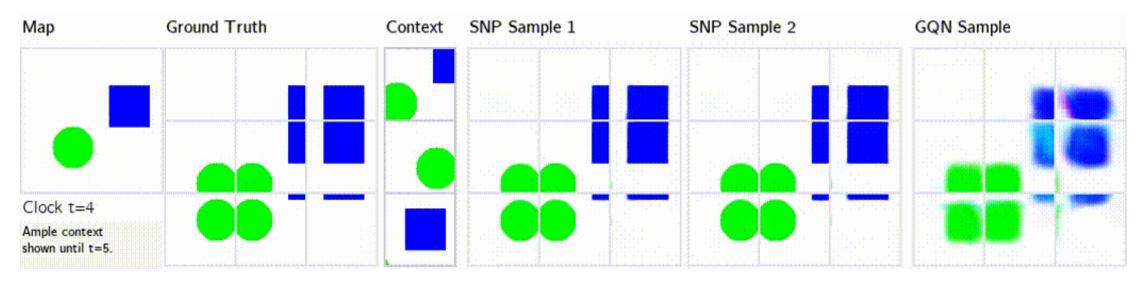
Context is shown intermittently and we allow the predictions to diverge from the true. On seeing the context, we observe that the belief about the object is updated.



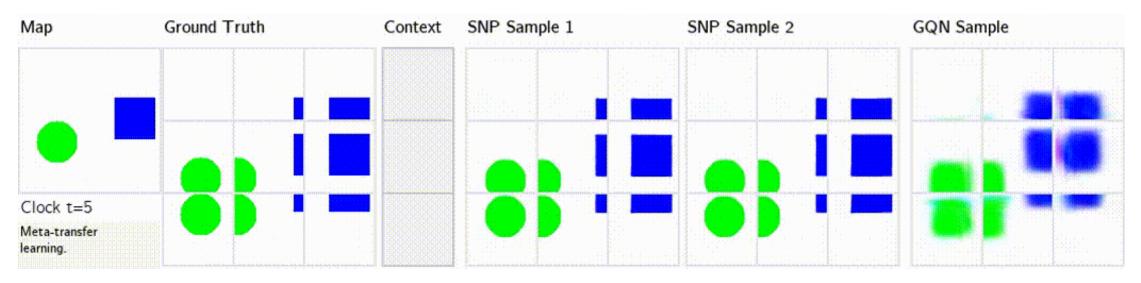
Context is shown intermittently and we allow the predictions to diverge from the true. On seeing the context, we observe that the belief about the object is updated.



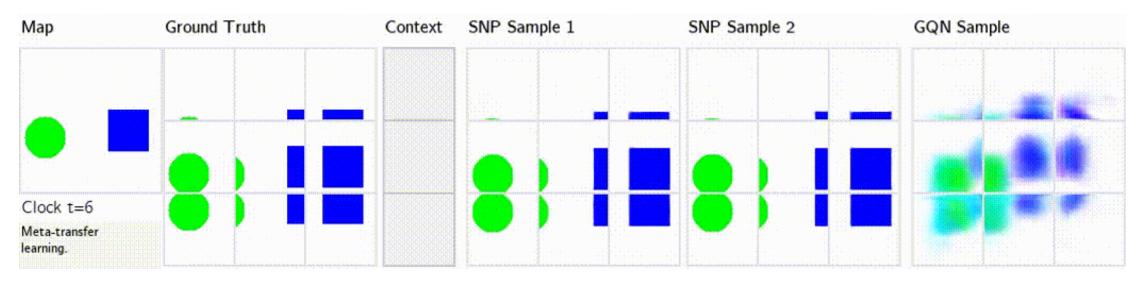
Context is shown intermittently and we allow the predictions to diverge from the true. On seeing the context, we observe that the belief about the object is updated.



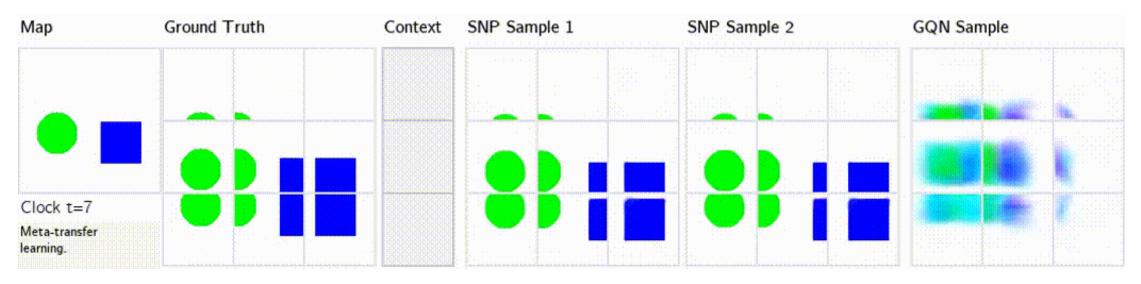
Context is shown intermittently and we allow the predictions to diverge from the true. On seeing the context, we observe that the belief about the object is updated.



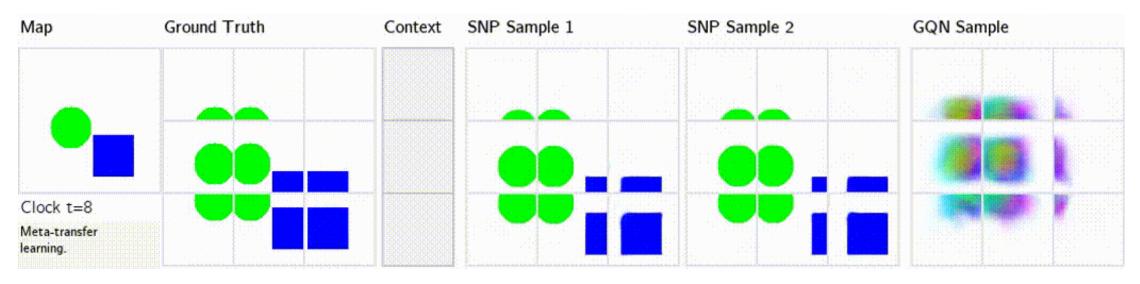
Context is shown intermittently and we allow the predictions to diverge from the true. On seeing the context, we observe that the belief about the object is updated.



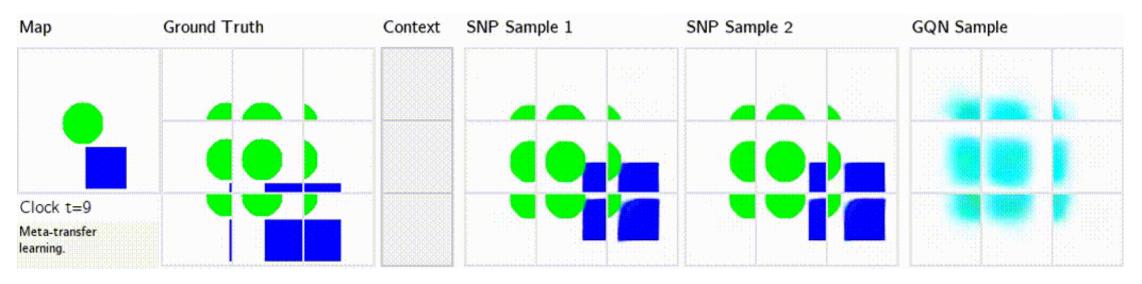
Context is shown intermittently and we allow the predictions to diverge from the true. On seeing the context, we observe that the belief about the object is updated.



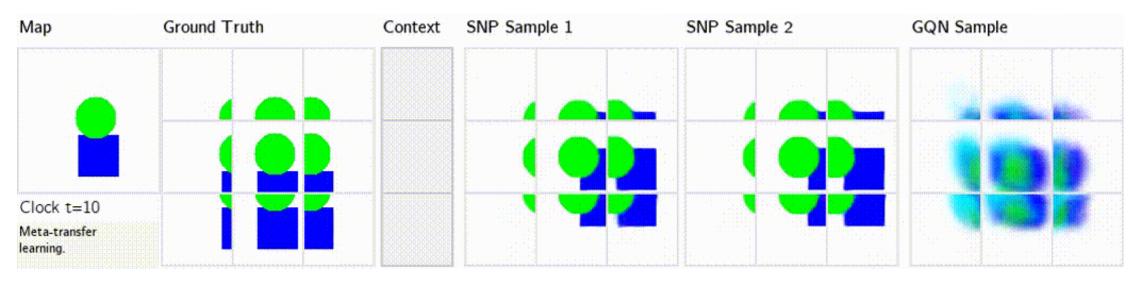
Context is shown intermittently and we allow the predictions to diverge from the true. On seeing the context, we observe that the belief about the object is updated.



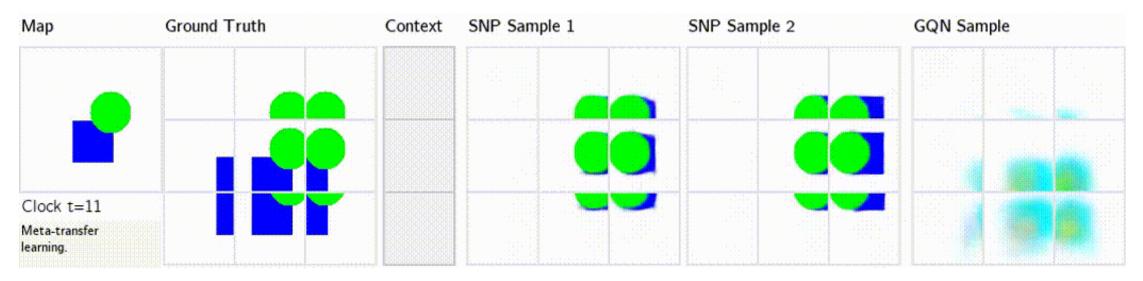
Context is shown intermittently and we allow the predictions to diverge from the true. On seeing the context, we observe that the belief about the object is updated.



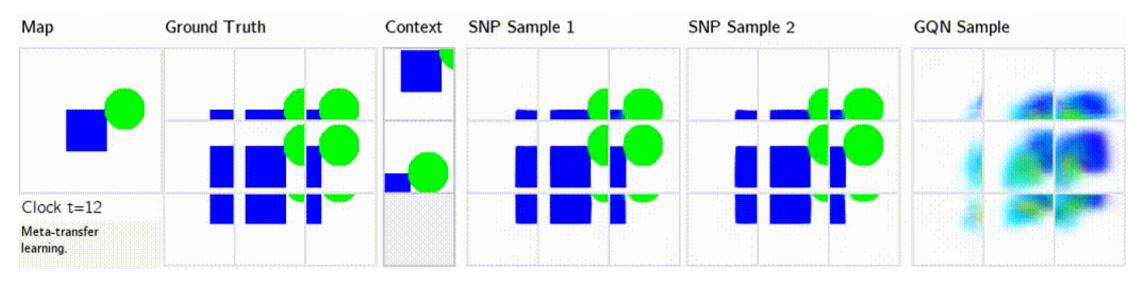
Context is shown intermittently and we allow the predictions to diverge from the true. On seeing the context, we observe that the belief about the object is updated.



Context is shown intermittently and we allow the predictions to diverge from the true. On seeing the context, we observe that the belief about the object is updated.

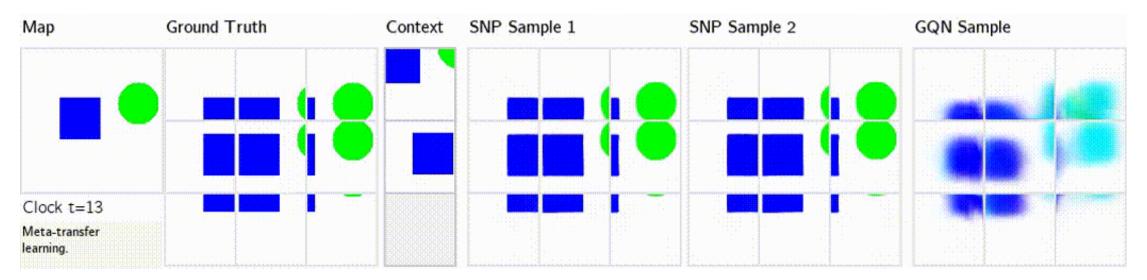


Context is shown intermittently and we allow the predictions to diverge from the true. On seeing the context, we observe that the belief about the object is updated.

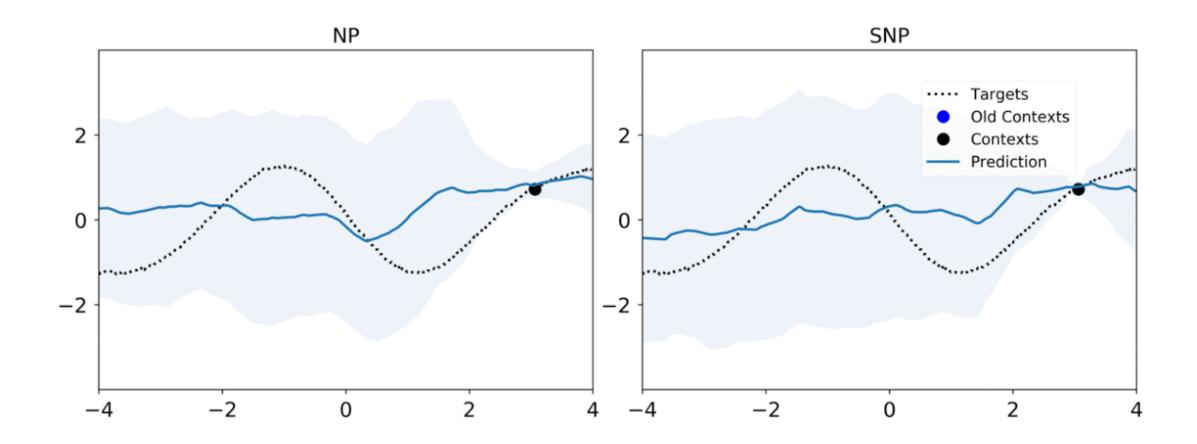


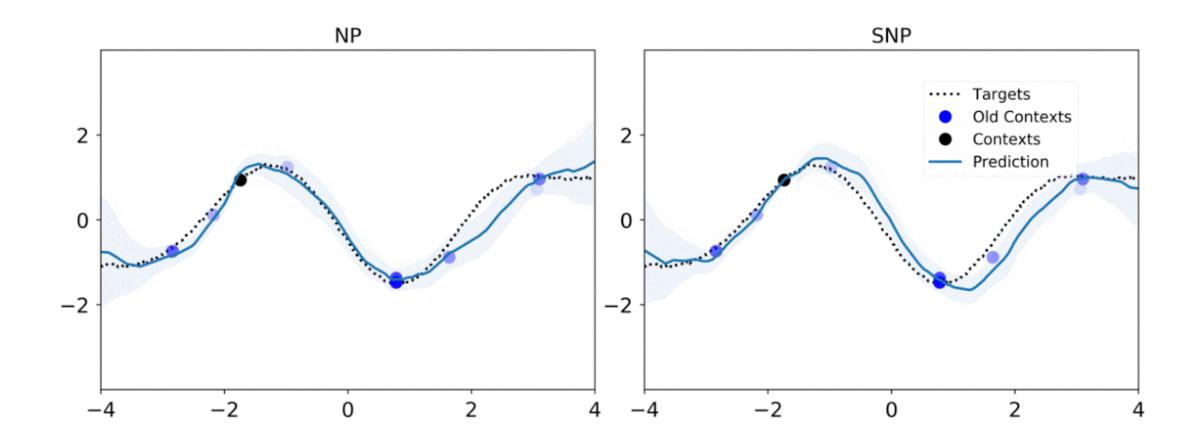
Context is shown again.

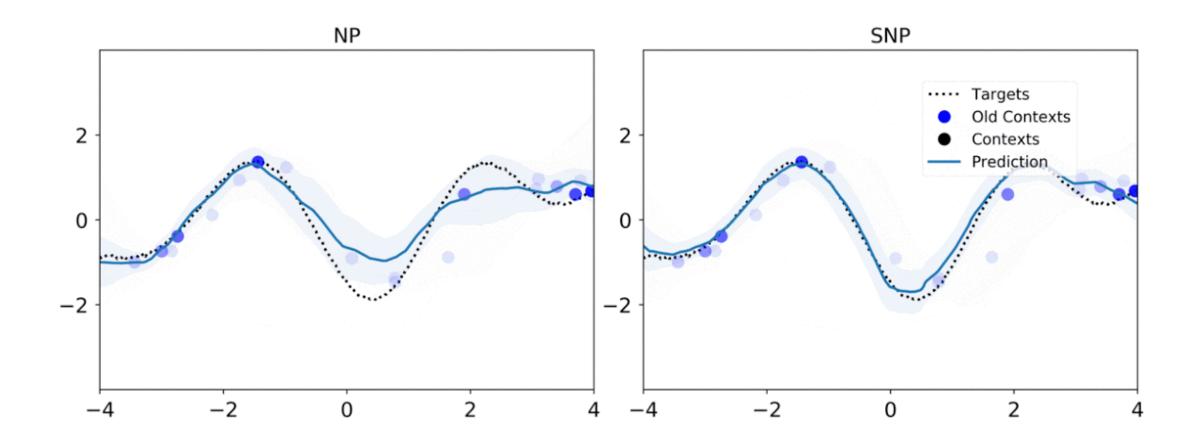
Context is shown intermittently and we allow the predictions to diverge from the true. On seeing the context, we observe that the belief about the object is updated.

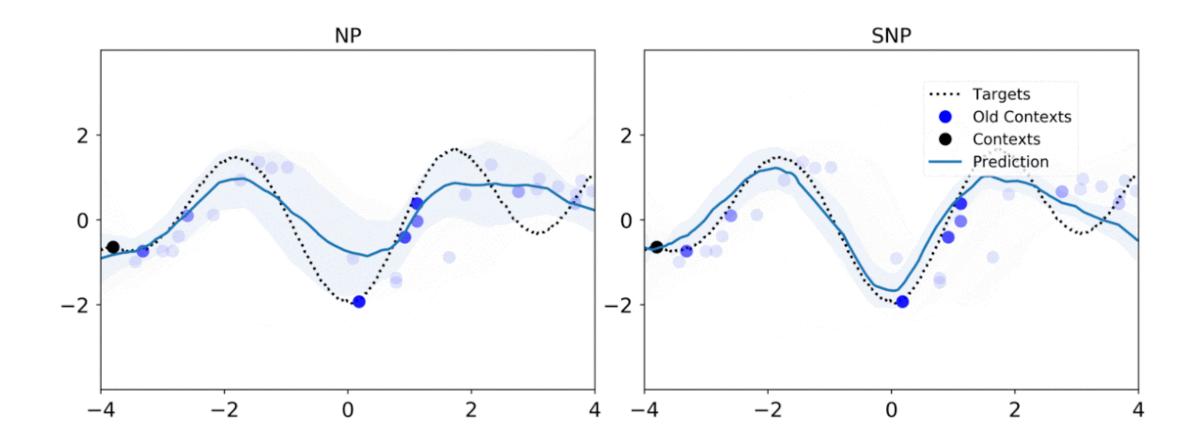


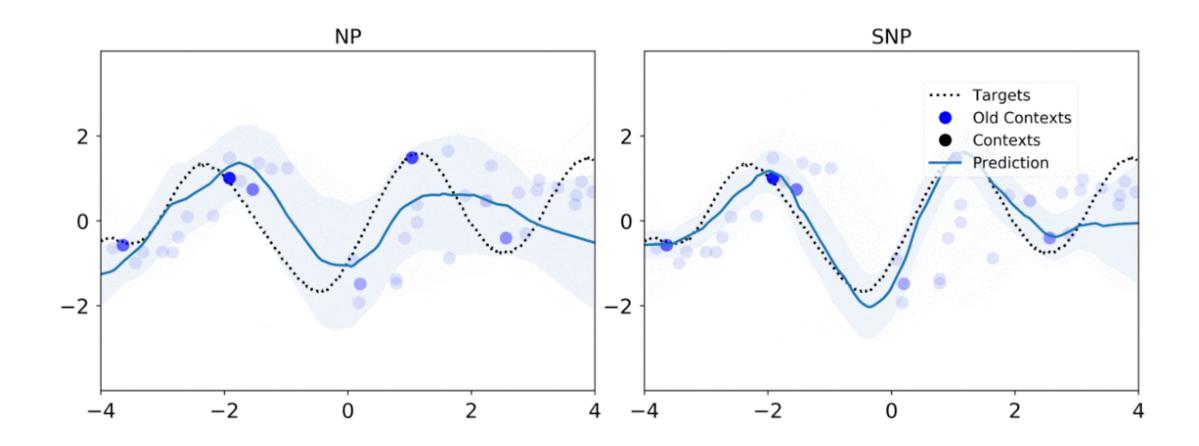
Context is shown again.











Negative Log-Likelihood

Dataset	Regime	T	GQN	TGQN	
				no PD	PD
Color Shapes	Predict	20	5348		564
Color Cube (<i>Det</i> .)	Predict	10	380		226
Multi-Object (<i>Det</i> .)	Predict	10	844		357
Color Shapes	Track	20	5285	482	513
Color Cube (<i>Jit</i> .)	Track	20	783	153	156
Multi-Object (<i>Jit</i> .)	Track	20	1777	450	475

Table 1: Negative $\log p(Y|X, C)$ estimated using importance-sampling from posterior with K = 40.

Do visit our poster

Today 10:45 AM - 12:45 PM

East Exhibition Hall B + C Poster 132

Thank You

