Sequential Neural Processes
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Inference and Learning
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ColorCube

Contextis shown in the first 5 tirrteps and the remaining are predicted purely on the command of the
actions provided to the object. The actions can be translation (L, R, U, D) or rotations (CloclimsekwAse)
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ColorCube

Contextis shown in the first 5 tirrteps and the remaining are predicted purely on the command of the
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Comparing against GON
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ColorShapes : Tracking and Updating

Context is shown intermittently and we allow the predictionsto diverge from the true. On seeing the context,
we observe that the belief about the object is updated.
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shown until t=5,

Contextis being shown.
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ColorShapes : Tracking and Updating

Context is shown intermittently and we allow the predictionsto diverge from the true. On seeing the context,
we observe that the belief about the object is updated.

Context is removed.



