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Two collections of samples X, Y from unknown distributions P and Q.

McDonald's
KFC

Problem : Are the two set of observations X and Y drawn from the same
distribution ?
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Two-Sample Test
Test the null hypothesis H0 : P = Q against H1 : P 6= Q

Samples : X = {xi}ni=1 ∼ P and Y = {yi}ni=1 ∼ Q
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Gaussian Kernel : kσ(x, y) = exp
(
−‖x−y‖

2
2

2σ2

)
Empirical Mean Embeddings of P and Q :

µ̂P(T) =

n∑
i=1

k(xi,T) µ̂Q(T) =

n∑
j=1

k(yj ,T)

'( '+
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Aboslute difference of the Mean Embeddings :

Ŝ(T) = |µ̂P(T)− µ̂Q(T)|
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Aboslute difference of the Mean Embeddings :

Ŝ(T) = |µ̂P(T)− µ̂Q(T)|
Test locations : (Tj)

J
j=1 ∼ Γ
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Test Statistic 1 with p ≥ 1 :

(
d̂`p,µ,J(X,Y)

)p
:= n

p
2

J∑
j=1

|µ̂P(Tj)− µ̂Q(Tj)| p

These Statistics are derived from metrics which metrize the weak convergence :

dLp,µ(P,Q) :=

(∫
t∈Rd

∣∣∣∣µP(t)− µQ(t)

∣∣∣∣pdΓ(t)

)
1/p

Theorem : Weak Convergence

αn
D−→ α ⇐⇒ dLp,µ(αn, α)→ 0

1. The case when p = 2 has been studied by [1, 2]
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Test of level α : Compute
(
d̂`p,µ,J(X,Y)

)p
and reject H0 if(

d̂`p,µ,J(X,Y)
)p

> Tα,p = 1− α quantile of the asymptotic null distribution.

Proposition : `1 geometry improves power
Let δ > 0. Under the alternative hypothesis H1, almost surely there exist N ≥ 1
such that for all n ≥ N with a probability 1− δ :(

d̂`2,µ,J(X,Y)
)2

> Tα,2 ⇒ d̂`1,µ,J(X,Y) > Tα,1
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Conclusion

Under the alternative hypothesis, Analytic Kernel (e.g Gaussian Kernel)
guarantees dense differences between µ̂P and µ̂Q

`1 geometry captures better these
dense differences.

We have also considered statistics based on Smooth Characteristic Functions
and obtained similar results.
Finally we have normalized the tests to obtain a simple null distribution and
learn the locations where the distributions differ the most.

@ East Exhibition Hall B + C #6
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