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Meta Learning via Minibatch Proximal Update (Meta-MinibatchProx)
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Meta-MinibatchProx learns a good prior model initialization from observed tasks such that

is close to the optimal models of new similar tasks, promoting new task learning
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• Training model: given a task distribution , we minimize a bi-level meta learning model

where each task has training samples

is empirical loss with predictor and loss . 
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update task-specific solution

• Training model: given a task distribution , we minimize a bi-level meta learning model

where each task has training samples

is empirical loss with predictor and loss . 
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Meta-MinibatchProx learns a good prior model initialization from observed tasks such that

is close to the optimal models of new similar tasks, promoting new task learning

• Training model: given a task distribution , we minimize a bi-level meta learning model
update the prior model

where each task has training samples

is empirical loss with predictor and loss . 
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small average distance to optimum 
models of all tasks in expectation
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where each task has training samples

is empirical loss with predictor and loss . 
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Meta-MinibatchProx learns a good prior model initialization from observed tasks such that

is close to the optimal models of new similar tasks, promoting new task learning

• Test model: given a randomly sampled task                 consisting of K samples

where denotes the learnt prior initialization.      



Meta Learning via Minibatch Proximal Update (Meta-MinibatchProx)

• Benefit: a few data is sufficient for adaptation

the learnt prior initialization is close to optimum

when training and test tasks are sampled from the same distribution.

small distance in 
expectation
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Optimization Algorithm 

We use SGD based algorithm to solve bi-level training model :
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• Step1. select a mini-batch of task of size .
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• Step1. select a mini-batch of task of size .

• Step2. for     , compute an approximate minimizer: 



Optimization Algorithm 

We use SGD based algorithm to solve bi-level training model :

• Step3. update the prior initialization model:  

12

• Step1. select a mini-batch of task of size .

• Step2. for     , compute an approximate minimizer: 



Optimization Algorithm 

We use SGD based algorithm to solve bi-level training model :

• Step3. update the prior initialization model: 

Theorem 1 (convergence guarantees, informal).
(1) Convex setting, i.e. convex . We prove

(2) Nonconvex setting, i.e. smooth . We prove
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• Step2. for     , compute an approximate minimizer: 

• Step1. select a mini-batch of task of size .



Generalization Performance Guarantee
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• In practice, we has only K samples and adapt the learnt prior model         to the new task:

• Ideally, for a given task              , one should train the model on the population risk

• Since                          , why          is good for generalization in few-shot learning problem?



Generalization Performance Guarantee

• Since                          , why          is good for generalization in few-shot learning problem?

Theorem 2 (generalization performance guarantee, informal).
Suppose each loss                  is convex and is smooth. Let                                               . Then we have

Remark: strong generalization performance, as our training model guarantees 

the learnt prior        is close to the optimum model  .
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• In practice, we has only K samples and adapt the learnt prior model         to the new task:

• Ideally, for a given task              , one should train the model on the population risk
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Few-shot regression : smaller mean square error (MSE) between prediction and ground truth

Few-shot classification: higher classification accuracy
miniImageNet tieredImageNet miniImageNet tieredImageNet
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