Efficient Meta Learning via Minibatch Proximal Update

Pan Zhou

Joint work with Xiao-Tong Yuan, Huan Xu, Shuicheng Yan, Jiashi Feng

National University of Singapore pzhou@u.nus.edu

Dec 11, 2019

Meta-MinibatchProx learns a good prior model initialization $\,w\,$ from observed tasks such that

w is close to the optimal models of new similar tasks, promoting new task learning

Meta-MinibatchProx learns a good prior model initialization $\,w\,$ from observed tasks such that

 $oldsymbol{w}$ is close to the optimal models of new similar tasks, promoting new task learning

• Training model: given a task distribution $\mathcal T$, we minimize a **bi-level** meta learning model

$$\min_{\boldsymbol{w}} \frac{1}{n} \sum_{i=1}^{n} \min_{\boldsymbol{w}_{T_i}} \mathcal{L}_{D_{T_i}}(\boldsymbol{w}_{T_i}) + \frac{\lambda}{2} \|\boldsymbol{w} - \boldsymbol{w}_{T_i}\|_2^2,$$

where each task $T_i \sim \mathcal{T}$ has K training samples $D_{T_i} = \{(m{x}_s, m{y}_s)\}_{s=1}^K$

Meta-MinibatchProx learns a good **prior model initialization** w from observed tasks such that

 $oldsymbol{w}$ is close to the optimal models of new similar tasks, promoting new task learning

• Training model: given a task distribution \mathcal{T} , we minimize a **bi-level** meta learning model

update task-specific solution

$$\min_{\boldsymbol{w}} \frac{1}{n} \sum_{i=1}^{n} \min_{\boldsymbol{w}_{T_i}} \mathcal{L}_{D_{T_i}}(\boldsymbol{w}_{T_i}) + \frac{\lambda}{2} \|\boldsymbol{w} - \boldsymbol{w}_{T_i}\|_2^2,$$

where each task $T_i \sim \mathcal{T}$ has K training samples $D_{T_i} = \{(\pmb{x}_s, \pmb{y}_s)\}_{s=1}^K$

Meta-MinibatchProx learns a good **prior model initialization** w from observed tasks such that

 $oldsymbol{w}$ is close to the optimal models of new similar tasks, promoting new task learning

• Training model: given a task distribution $\mathcal T$, we minimize a **bi-level** meta learning model

update the prior model

$$\min_{\boldsymbol{w}} \frac{1}{n} \sum_{i=1}^{n} \min_{\boldsymbol{w}_{T_i}} \mathcal{L}_{D_{T_i}}(\boldsymbol{w}_{T_i}) + \frac{\lambda}{2} \|\boldsymbol{w} - \boldsymbol{w}_{T_i}\|_2^2,$$

where each task $T_i \sim \mathcal{T}$ has K training samples $D_{T_i} = \{(m{x}_s, m{y}_s)\}_{s=1}^K$

Meta-MinibatchProx learns a good prior model initialization $\,w\,$ from observed tasks such that

 $oldsymbol{w}$ is close to the optimal models of new similar tasks, promoting new task learning

• Training model: given a task distribution ${\mathcal T}$, we minimize a **bi-level** meta learning model

$$\min_{\boldsymbol{w}} \frac{1}{n} \sum_{i=1}^{n} \min_{\boldsymbol{w}_{T_i}} \mathcal{L}_{D_{T_i}}(\boldsymbol{w}_{T_i}) + \frac{\lambda}{2} \|\boldsymbol{w} - \boldsymbol{w}_{T_i}\|_2^2,$$

where each task $T_i \sim \mathcal{T}$ has K training samples $D_{T_i} = \{(\pmb{x}_s, \pmb{y}_s)\}_{s=1}^K$

Meta-MinibatchProx learns a good **prior model initialization** w from observed tasks such that

 $oldsymbol{w}$ is close to the optimal models of new similar tasks, promoting new task learning

• Test model: given a randomly sampled task $T \sim \mathcal{T}$ consisting of K samples $D_T = \{({m x}_s, {m y}_s)\}_{s=1}^K$

$$\min_{\boldsymbol{w}_T} \mathcal{L}_{D_T}(\boldsymbol{w}_T) + \frac{\lambda}{2} \|\boldsymbol{w}^* - \boldsymbol{w}_T\|_2^2,$$

where $oldsymbol{w}^*$ denotes the learnt prior initialization.

Meta-MinibatchProx learns a good prior model initialization $\,w\,$ from observed tasks such that

w is close to the optimal models of new similar tasks, promoting new task learning

• Test model: given a randomly sampled task $T \sim \mathcal{T}$ consisting of K samples $D_T = \{({m x}_s, {m y}_s)\}_{s=1}^K$

$$\min_{\boldsymbol{w}_T} \mathcal{L}_{D_T}(\boldsymbol{w}_T) + \frac{\lambda}{2} \|\boldsymbol{w}^* - \boldsymbol{w}_T\|_2^2,$$

where $oldsymbol{w}^*$ denotes the learnt prior initialization.

• **Benefit:** a few data is sufficient for adaptation

the learnt prior initialization $oldsymbol{w}^*$ is close to optimum $oldsymbol{w}_T$

when training and test tasks are sampled from the same distribution.

We use SGD based algorithm to solve bi-level training model :

$$\min_{\boldsymbol{w}} \left\{ F(\boldsymbol{w}) := \frac{1}{n} \sum_{i=1}^{n} \min_{\boldsymbol{w}_{T_i}} \mathcal{L}_{D_{T_i}}(\boldsymbol{w}_{T_i}) + \frac{\lambda}{2} \|\boldsymbol{w} - \boldsymbol{w}_{T_i}\|_2^2 \right\}$$

We use SGD based algorithm to solve bi-level training model :

$$\min_{\boldsymbol{w}} \left\{ F(\boldsymbol{w}) := \frac{1}{n} \sum_{i=1}^{n} \min_{\boldsymbol{w}_{T_i}} \mathcal{L}_{D_{T_i}}(\boldsymbol{w}_{T_i}) + \frac{\lambda}{2} \|\boldsymbol{w} - \boldsymbol{w}_{T_i}\|_2^2 \right\}$$

• Step1. select a mini-batch of task $\{T_i\}$ of size b_s .

We use SGD based algorithm to solve bi-level training model :

$$\min_{\boldsymbol{w}} \left\{ F(\boldsymbol{w}) := \frac{1}{n} \sum_{i=1}^{n} \min_{\boldsymbol{w}_{T_i}} \mathcal{L}_{D_{T_i}}(\boldsymbol{w}_{T_i}) + \frac{\lambda}{2} \|\boldsymbol{w} - \boldsymbol{w}_{T_i}\|_2^2 \right\}$$

- Step1. select a mini-batch of task $\{T_i\}$ of size b_s .
- Step2. for T_i , compute an approximate minimizer: $\boldsymbol{w}_{T_i} \approx \operatorname{argmin}_{\boldsymbol{w}_{T_i}} \{g(\boldsymbol{w}_{T_i}) := \mathcal{L}_{D_{T_i}}(\boldsymbol{w}_{T_i}) + \frac{\lambda}{2} \|\boldsymbol{w} - \boldsymbol{w}_{T_i}\|_2^2\}, \text{ namely } \|\nabla g(\boldsymbol{w}_{T_i})\|_2^2 \le \epsilon_s$

We use SGD based algorithm to solve bi-level training model :

$$\min_{\boldsymbol{w}} \left\{ F(\boldsymbol{w}) := \frac{1}{n} \sum_{i=1}^{n} \min_{\boldsymbol{w}_{T_i}} \mathcal{L}_{D_{T_i}}(\boldsymbol{w}_{T_i}) + \frac{\lambda}{2} \|\boldsymbol{w} - \boldsymbol{w}_{T_i}\|_2^2 \right\}$$

- Step1. select a mini-batch of task $\{T_i\}$ of size b_s .
- Step2. for T_i , compute an approximate minimizer: $\boldsymbol{w}_{T_i} \approx \operatorname{argmin}_{\boldsymbol{w}_{T_i}} \{g(\boldsymbol{w}_{T_i}) := \mathcal{L}_{D_{T_i}}(\boldsymbol{w}_{T_i}) + \frac{\lambda}{2} \|\boldsymbol{w} - \boldsymbol{w}_{T_i}\|_2^2\}, \text{ namely } \|\nabla g(\boldsymbol{w}_{T_i})\|_2^2 \leq \epsilon_s$
- Step3. update the prior initialization model:

$$\boldsymbol{w} = \boldsymbol{w} - \eta_s \lambda(\boldsymbol{w} - \frac{1}{b_s} \sum_{i=1}^{b_s} \boldsymbol{w}_{T_i})$$

We use SGD based algorithm to solve bi-level training model :

$$\min_{\boldsymbol{w}} \left\{ F(\boldsymbol{w}) := \frac{1}{n} \sum_{i=1}^{n} \min_{\boldsymbol{w}_{T_i}} \mathcal{L}_{D_{T_i}}(\boldsymbol{w}_{T_i}) + \frac{\lambda}{2} \|\boldsymbol{w} - \boldsymbol{w}_{T_i}\|_2^2 \right\}$$

- Step1. select a mini-batch of task $\{T_i\}$ of size b_s .
- Step2. for T_i , compute an approximate minimizer: $\boldsymbol{w}_{T_i} \approx \operatorname{argmin}_{\boldsymbol{w}_{T_i}} \{g(\boldsymbol{w}_{T_i}) := \mathcal{L}_{D_{T_i}}(\boldsymbol{w}_{T_i}) + \frac{\lambda}{2} \|\boldsymbol{w} - \boldsymbol{w}_{T_i}\|_2^2\}, \text{ namely } \|\nabla g(\boldsymbol{w}_{T_i})\|_2^2 \leq \epsilon_s$
- Step3. update the prior initialization model:

$$\boldsymbol{w} = \boldsymbol{w} - \eta_s \lambda (\boldsymbol{w} - \frac{1}{b_s} \sum_{i=1}^{b_s} \boldsymbol{w}_{T_i})$$

Theorem 1 (convergence guarantees, informal).

(1) Convex setting, i.e. convex $\phi_{D_{T_i}}(\boldsymbol{w})$. We prove $\mathbb{E}[\|\boldsymbol{w}^S - \boldsymbol{w}^*\|_2^2] \leq \mathcal{O}(\frac{1}{S})$.

(2) Nonconvex setting, i.e. smooth $\phi_{D_{T_i}}(\boldsymbol{w})$. We prove $\mathbb{E}_s[\|\nabla F(\boldsymbol{w}^s)\|_2^2] \leq \mathcal{O}(\frac{1}{\sqrt{S}})$.

Generalization Performance Guarantee

- Ideally, for a given task $T \sim \mathcal{T}$, one should train the model on the population risk Population solution: $\boldsymbol{w}_{T,P}^* = \operatorname{argmin}_{\boldsymbol{w}_T} \left\{ \mathcal{L}(\boldsymbol{w}_T) := \mathbb{E}_{(\boldsymbol{x},\boldsymbol{y})\sim T} \ell(f(\boldsymbol{w}_T,\boldsymbol{x}),\boldsymbol{y}) \right\}.$
- In practice, we has only K samples and adapt the learnt prior model w^* to the new task: Empirical solution: $w_T^* = \operatorname{argmin}_{w_T} \mathcal{L}_{D_T}(w_T) + \frac{\lambda}{2} \|w^* - w_T\|_2^2$.
- Since $m{w}^*_{T,P}
 eq m{w}^*_T$, why $m{w}^*_T$ is good for generalization in few-shot learning problem?

Generalization Performance Guarantee

- Ideally, for a given task $T \sim \mathcal{T}$, one should train the model on the population risk Population solution: $\boldsymbol{w}_{T,P}^* = \operatorname{argmin}_{\boldsymbol{w}_T} \left\{ \mathcal{L}(\boldsymbol{w}_T) := \mathbb{E}_{(\boldsymbol{x},\boldsymbol{y})\sim T} \ell(f(\boldsymbol{w}_T,\boldsymbol{x}),\boldsymbol{y}) \right\}.$
- In practice, we has only K samples and adapt the learnt prior model w^* to the new task: Empirical solution: $w_T^* = \operatorname{argmin}_{w_T} \mathcal{L}_{D_T}(w_T) + \frac{\lambda}{2} \|w^* - w_T\|_2^2$.
- Since $m{w}^*_{T,P}
 eq m{w}^*_T$, why $m{w}^*_T$ is good for generalization in few-shot learning problem?

Theorem 2 (generalization performance guarantee, informal). Suppose each loss $\phi_{D_{T_i}}(\boldsymbol{w})$ is convex and is smooth. Let $D_T = \{(\boldsymbol{x}_i, \boldsymbol{y}_i)\}_{i=1}^K \sim T$. Then we have $\mathbb{E}_{T \sim \mathcal{T}} \mathbb{E}_{D_T \sim T} (\mathcal{L}(\boldsymbol{w}_T^*) - \mathcal{L}(\boldsymbol{w}_{T,P}^*)) \leq \frac{c}{\sqrt{K}} \mathbb{E}[\|\boldsymbol{w}^* - \boldsymbol{w}_{T,P}^*\|_2^2]]$ with a constant c. (1)

Remark: strong generalization performance, as our training model guarantees

the learnt prior $oldsymbol{w}^*$ is close to the optimum model $oldsymbol{w}^*_{T,P}.$

Experimental results

Few-shot regression : smaller mean square error (MSE) between prediction and ground truth

Few-shot classification: higher classification accuracy

POSTER # 26

05:00 -- 07:00 PM @ East Exhibition Hall B + C

Thanks!