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Basic Idea and Cycle Consistency

I We can employ cycle consistency to improve
the performance of multiple neural networks
among several domains when the
transformations form some cycles.

I Applications: translation, shape matching,
CycleGAN, 3D model representations etc.

The choice of cycles used to enforce cycle consistency is
important when there are many domains.



Mapping Graph and Cycle Bases

I A mapping graph is a directed graph Gf = (V, E) such that
each node u ∈ V is associated with a domain Du and each
edge (u, v) ∈ E with a function fuv : Du → Dv .

I The cycle bases can be defined in several manners depending
on what binary operator of cycles is used to compose new
cycles.

I The most common bases are binary cycle bases and
fundamental cycle bases.



Cycle Bases

I It has been known that there
always exist binary cycle
bases of size |E| − |V|+ 1.

I In particular, a fundamental
cycle bases can be easily
constructed from a spanning
tree on G.

I Not all binary bases are
cycle-consistent.



Cycle-Consistency Bases

I A mapping graph Gf is called cycle consistent if the
composition of f along each cycle in Gf is identity, i.e.,

fuku1 ◦ fuk−1uk ◦ · · · ◦ fu2u3 ◦ fu1u2 = I .

I The number of cycles in a graph can be exponentially large. It
is impossible to enforce consistency on all cycles directly in
large graphs.

I A cycle bases B = {C1, . . . ,C|B|} is cycle-consistent if
cycle-consistency is guaranteed over all cycles in G for any
function family f whenever f is cycle-consistent along cylces
in B.



Cycle-Consistency Bases

I Fundamental bases always work
but not perfect.

I Intuitively it will be harder to
optimize f along a longer cycle.
Fundamental bases come from the
spanning trees of graphs so that
can contain many long cycles.



Simple Case of Translation Synchronization

Specifically we consider the translation functions fij(x) := x + tij
where tij is parameters to be optimized. Suppose t0ij is the initial
parameter.
Loss Function:

min
{tij ,(i ,j)∈E}

∑
(i ,j)∈E0

(tij − t0ij)
2 +

∑
c=(i1···ik i1)∈C

wc(
∑
l

til il+1
)2. (1)

We hope the final tij are close to t
(0)
ij and keep the cycle

consistency.



Condition Number for Translation Case

(1) can be rewritten in matrix form:

min
t

tTHt − 2tT t0 + ‖t0‖2, (2)

H :=
∑
e∈E0

v evT
e +

∑
c∈C

wcv cvT
c .

I This quadratic optimization problem is generally relevant to
condition number κ(H) = λmax(H)/λmin(H).

I The deviation between the optimal solution tand the ground
truth tgt ground truth solution is

‖t∗ − tgt‖ ≤ 1

λmin(H)
‖t0 − tgt‖

where t0 is the initialization translation vector.



Sampling Process (Step I - Csup generation)

We construct Csup by computing the breadth-first spanning
tree T (vi ) rooted at each vertex vi ∈ V . The resulting Csup has
two desired properties:

I The cycles in Csup are kept as short as possible.

I If G is sparse, then Csup contains a mixture of short and long
cycles. These long cycles can address the issue of
accumulated errors if we only enforce the cycle-consistency
constraint along short cycles.



Sampling Process (Step II - Weight Optimization)

We formulate the following semidefinite program for optimizing
cycle weights:

min
wc≥0,s1,s2

s2 − s1 (3)

subject to s1I �
∑
e∈E0

v evT
e +

∑
c∈Csup

wcv cvT
c � s2I∑

c∈Csup

|v c |2wc = λ, wc ≥ δ, ∀c ∈ Cmin (4)

I (3) enforces H close to an identity matrix.

I wc ≥ δ for c ∈ Cmin guaranteed cycles in Cmin taken into
account.



Importance Sampling

The semidefinite program described above controls the condition
number of H, but it does not control the size of the cycle sets with
positive weights.
We seek to select a subset of cycles Csample ⊂ Csup and compute
new weights w c , c ∈ Csample , so that∑

c∈Csample

w cv cvT
c ≈

∑
c∈Csup

w cv cvT
c . (5)



Main Results of Sampling

Under mild assumptions, w.h.p we have

E [|Csample |] = L, (6)

E [
∑

c∈Csample

w cv cvT
c ] =

∑
c∈Csup

wcv cvT
c (7)

||Csample | − L| ≤ O(log n)σ1 (8)

‖
∑

c∈Csample

w cv cvT
c −

∑
c∈Csup

wcv cvT
c ‖ ≤ O(log n)σ2 (9)

where n is the number of domains and σ21 and σ22 are the
unweighted and weighted variances of |Csample | respectively.



Experimental Results - Consistent Shape Correspondence
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I Encode the map from one shape Si and another shape Sj as a
functional map Xij : F(Si )→ F(Sj).

I Considered two shape collections from ShapeCoSeg: Alien
(200 shapes) and Vase (300 shapes).

I Construct G by connecting every shape with k = 25 randomly
chosen shapes.



Experimental Results - Consistent Neural Networks
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I V represents image objects
viewed from similar camera
poses.

I Jointly learn the neural
networks associated with
each edge.


