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• Many regularizers are designed ad-hoc
• A principled approach: 

• Theoretically prove upper bounds on generalization error 
• Empirically regularize the upper bounds 

• Bottleneck in prior work: 
• Mostly considers norm of weights
• ⇒ Loose/pessimistic bounds (e.g., exponential in depth)

[Bartlett et. al’17, Neyshabur et. al’17, Nagarajan and Kolter’19]
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+ low-order terms 

• Measures stability/Lipschitzness of the network around training examples
• Prior works consider worst-case stability over all inputs ⇒ exponential depth 

dependency [Bartlett et. al’17, Neyshabur et. al’17, etc.] 
• Noise stability also studied in [Arora et. al’19, Nagarajan and Kolter’19] with looser 

bounds
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Regularizing our Bound
• Penalize squared Jacobian norm in loss 

• Hidden layer controlled by normalization layers (BatchNorm, LayerNorm) 
• Helps in variety of settings which lack regularization compared to baseline
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