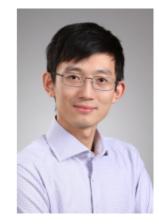
Data-Dependent Sample Complexities for Deep Neural Networks

Colin Wei

Tengyu Ma

Stanford University



• Many regularizers are designed ad-hoc

- Many regularizers are designed ad-hoc
- A principled approach:
 - Theoretically prove upper bounds on generalization error

- Many regularizers are designed ad-hoc
- A principled approach:
 - Theoretically prove upper bounds on generalization error
 - Empirically regularize the upper bounds

- Many regularizers are designed ad-hoc
- A principled approach:
 - Theoretically prove upper bounds on generalization error
 - Empirically regularize the upper bounds
- Bottleneck in prior work:
 - Mostly considers norm of weights

- Many regularizers are designed ad-hoc
- A principled approach:
 - Theoretically prove upper bounds on generalization error
 - Empirically regularize the upper bounds
- Bottleneck in prior work:
 - Mostly considers norm of weights
 - ⇒ Loose/pessimistic bounds (e.g., exponential in depth)

generalization $\leq g$ (weights, training data)

• Add $g(\cdot)$ to the loss as an explicit regularizer

generalization $\leq g$ (weights, training data)

• Add $g(\cdot)$ to the loss as an explicit regularizer

Theorem (informal): $g(\cdot) = \frac{\text{jacobian norm} \cdot \text{hidden layer norm}}{\text{margin } \sqrt{\text{train set size}}} + \text{low-order terms}$

generalization $\leq g$ (weights, training data)

• Add $g(\cdot)$ to the loss as an explicit regularizer

Theorem (informal): $g(\cdot) = \frac{\text{jacobian norm} \cdot \text{hidden layer norm}}{\text{margin } \sqrt{\text{train set size}}} + \text{low-order terms}$

 Jacobian norm = max norm of the Jacobian of model w.r.t hidden layers on training data

generalization $\leq g$ (weights, training data)

• Add $g(\cdot)$ to the loss as an explicit regularizer

Theorem (informal): $g(\cdot) = \frac{\text{jacobian norm} \cdot \text{hidden layer norm}}{\text{margin } \sqrt{\text{train set size}}} + \text{low-order terms}$

- Jacobian norm = max norm of the Jacobian of model w.r.t hidden layers on training data
- Hidden layer norm = max norm of hidden activation layer on training data

generalization $\leq g$ (weights, training data)

• Add $g(\cdot)$ to the loss as an explicit regularizer

Theorem (informal): $g(\cdot) = \frac{\text{jacobian norm} \cdot \text{hidden layer norm}}{\text{margin } \sqrt{\text{train set size}}} + \text{low-order terms}$

- Jacobian norm = max norm of the Jacobian of model w.r.t hidden layers on training data
- Hidden layer norm = max norm of hidden activation layer on training data
- Margin = largest logit second largest logit

generalization \leq g(weights, training data)

• Add $g(\cdot)$ to the loss as an explicit regularizer

Theorem (informal): $g(\cdot) = \frac{\text{jacobian norm} \cdot \text{hidden layer norm}}{\text{margin } \sqrt{\text{train set size}}} + \text{low-order terms}$

• Measures stability/Lipschitzness of the network around training examples

generalization \leq g(weights, training data)

• Add $g(\cdot)$ to the loss as an explicit regularizer

Theorem (informal): $g(\cdot) = \frac{\text{jacobian norm} \cdot \text{hidden layer norm}}{\text{margin } \sqrt{\text{train set size}}} + \text{low-order terms}$

- Measures stability/Lipschitzness of the network around training examples
 - Prior works consider worst-case stability over all inputs ⇒ exponential depth dependency [Bartlett et. al'17, Neyshabur et. al'17, etc.]

generalization \leq g(weights, training data)

• Add $g(\cdot)$ to the loss as an explicit regularizer

Theorem (informal): $g(\cdot) = \frac{\text{jacobian norm} \cdot \text{hidden layer norm}}{\text{margin } \sqrt{\text{train set size}}} + \text{low-order terms}$

- Measures stability/Lipschitzness of the network around training examples
 - Prior works consider worst-case stability over all inputs ⇒ exponential depth dependency [Bartlett et. al'17, Neyshabur et. al'17, etc.]
 - Noise stability also studied in [Arora et. al'19, Nagarajan and Kolter'19] with looser bounds

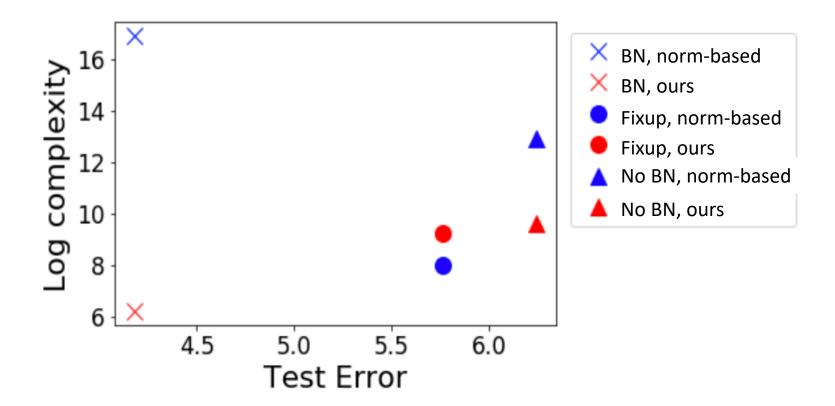
• Penalize squared Jacobian norm in loss

- Penalize squared Jacobian norm in loss
 - Hidden layer controlled by normalization layers (BatchNorm, LayerNorm)

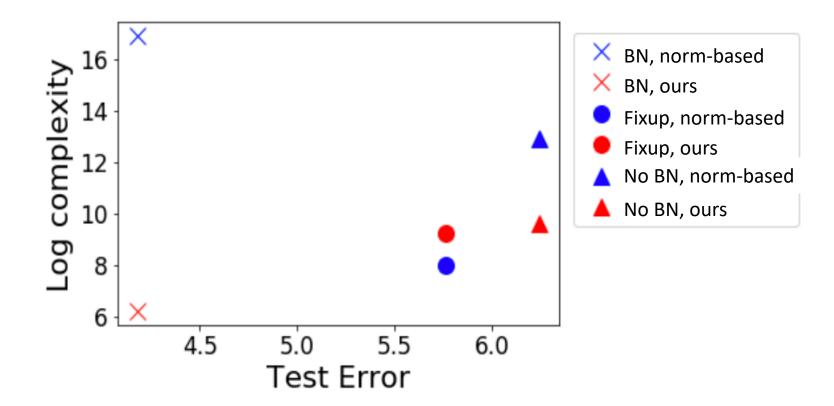
- Penalize squared Jacobian norm in loss
 - Hidden layer controlled by normalization layers (BatchNorm, LayerNorm)
- Helps in variety of settings which lack regularization compared to baseline

Setting	Normalization	Jacobian Reg	Test Error
Low learning rate (0.01)	BatchNorm	×	5.98%
		\checkmark	5.46%
No data augmentation	BatchNorm	×	10.44%
		\checkmark	8.25%
No BatchNorm	None	×	6.65%
	LayerNorm Ba et al., 2016	×	6.20%
		\checkmark	5.57%

• Ours (red) vs. norm-based bound (blue) [Bartlett et. al'17]

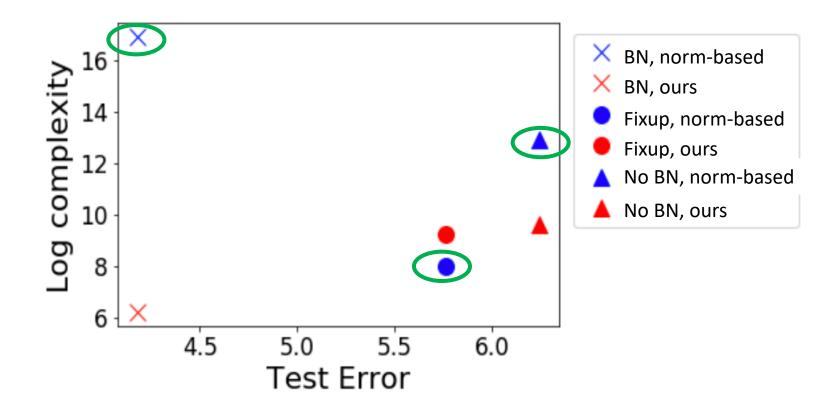


• Ours (red) vs. norm-based bound (blue) [Bartlett et. al'17]



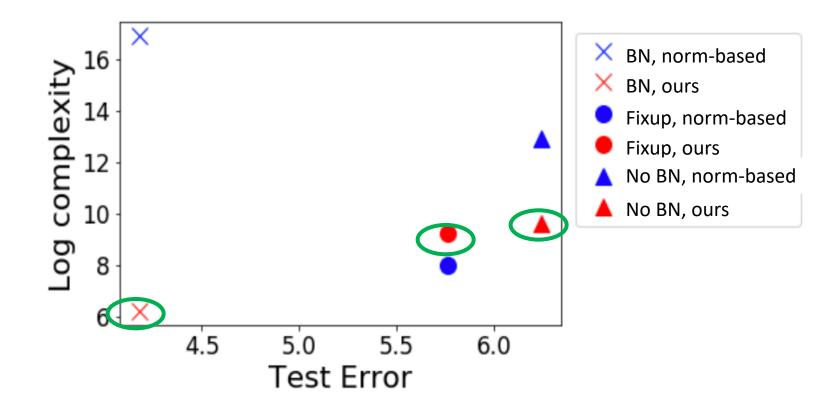
• Our bound correlates better with test error

• Ours (red) vs. norm-based bound (blue) [Bartlett et. al'17]



• Our bound correlates better with test error

• Ours (red) vs. norm-based bound (blue) [Bartlett et. al'17]



Our bound correlates better with test error

• Tighter bounds by considering data-dependent properties (stability on training data)

- Tighter bounds by considering data-dependent properties (stability on training data)
- Our bound avoids exponential dependencies on depth

- Tighter bounds by considering data-dependent properties (stability on training data)
- Our bound avoids exponential dependencies on depth
- Optimizing this bound improves empirical performance

- Tighter bounds by considering data-dependent properties (stability on training data)
- Our bound avoids exponential dependencies on depth
- Optimizing this bound improves empirical performance
- Follow up work: tighter bounds and empirical improvement over strong baselines
 - Works for both robust and clean accuracy

[Wei and Ma'19, "Improved Sample Complexities for Deep Networks and Robust Classification via an All-Layer Margin"]

- Tighter bounds by considering data-dependent properties (stability on training data)
- Our bound avoids exponential dependencies on depth
- Optimizing this bound improves empirical performance
- Follow up work: tighter bounds and empirical improvement over strong baselines
 - Works for both robust and clean accuracy

[Wei and Ma'19, "Improved Sample Complexities for Deep Networks and Robust Classification via an All-Layer Margin"]

Come find our poster: 10:45 AM -- 12:45 PM @ East Exhibition Hall B + C #220!