Decentralize and Randomize: Faster Algorithm for Wasserstein Barycenters

Pavel Dvurechensky, Darina Dvinskikh, Alexander Gasnikov, César A. Uribe, Angelia Nedić
Wasserstein barycenter

$$\hat{\nu} = \arg \min_{\nu \in P_2(\Omega)} \sum_{i=1}^{m} \mathcal{W}(\mu_i, \nu),$$

where $\mathcal{W}(\mu, \nu)$ is the Wasserstein distance between measures μ and ν on Ω.

WB is efficient in machine learning problems with geometric data, e.g. template image reconstruction from random sample:

Figure: Images from [Cuturi, 2013]
Motivation

We fix the support $z_i, i = 1, \ldots, n$ of the barycenter: $\nu = \sum_{i=1}^{n} p_i \delta(z_i)$.

We add Entropic regularization with parameter γ.

$$\hat{p} = \arg \min_{p \in S_1(n)} \sum_{i=1}^{m} W_{\gamma, \mu_i}(p).$$

Challenges:

- Fine discrete approximation for ν and $\mu \Rightarrow \text{large} \ n$,
- Large amount of data $\Rightarrow \text{large} \ m$,
- Data produced and stored distributedly (e.g. produced by a network of sensors),
- Possibly continuous measures μ_i.
Background and contribution

<table>
<thead>
<tr>
<th>Paper</th>
<th>Large m, n</th>
<th>Dist. Data</th>
<th>Cont. μ_i</th>
<th>Compl.-ty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sinkhorn-type</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
<td>?</td>
</tr>
<tr>
<td>[Cuturi&Doucet’14, Benamou et al.’15]</td>
<td>✓</td>
<td>×</td>
<td>×</td>
<td>?</td>
</tr>
<tr>
<td>Distributed AGD</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
<td>?</td>
</tr>
<tr>
<td>[Scaman et al.’17, Uribe et al.’17, Lan et al.’17]</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
<td>?</td>
</tr>
<tr>
<td>SGD-based</td>
<td>✓</td>
<td>×</td>
<td>✓</td>
<td>$1/\varepsilon^2$</td>
</tr>
<tr>
<td>[Staib et al.’17, Claici et al.’18]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>$1/\varepsilon^2$</td>
</tr>
<tr>
<td>This paper</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>$1/\varepsilon^2$</td>
</tr>
</tbody>
</table>
Contributions

- **Novel Accelerated Primal-Dual Stochastic Gradient Method (APDSGD) for general class** of stochastic optimization problems with linear constraints

\[
\begin{align*}
(P) : \min_{x \in Q \subseteq E} \{ f(x) : Ax = b \}, \quad (D) : \min_{\lambda} \{ \langle \lambda, b \rangle + \mathbb{E}_\xi F^* \left(-A^T \lambda, \xi \right) \}.
\end{align*}
\]

with complexity

\[
O \left(\max \left\{ \sqrt{\frac{L_D R_D^2}{\varepsilon}}, \frac{\sigma^2 R_D^2}{\varepsilon^2} \right\} \right)
\]

to obtain

\[
f(\mathbb{E}\hat{x}) - f^* \leq \varepsilon \text{ and } \| A \mathbb{E}\hat{x} - b \|_2 \leq \varepsilon.
\]

- **Decentralized distributed** algorithm for γ-regularized Wasserstein barycenter of a set of continuous measures stored over a network with arbitrary topology with complexity

\[
O \left(mn \max \left\{ \frac{1}{\sqrt{\varepsilon \gamma}}, \frac{m}{\varepsilon^2} \right\} \right) \text{ a.o.}
\]

- **Experiments** on the MNIST digit dataset and the IXI Magnetic Resonance dataset.
Distributed optimization framework\(^1\)

\[
\min_{x \in \mathbb{R}} \sum_{i=1}^{m} f_i(x) \iff \min_{x_1 = \ldots = x_m} \sum_{i=1}^{m} f_i(x_i) \quad \text{s.t. } x_1 = \ldots = x_m \in \mathbb{R}.
\]

Laplacian matrix

\[
W = \begin{pmatrix}
2 & -1 & 0 & -1 \\
-1 & 3 & -1 & -1 \\
0 & -1 & 1 & 0 \\
-1 & -1 & 0 & 2
\end{pmatrix}
\]

\[
x_1 = \ldots = x_m \iff \sqrt{W} x = 0 \rightarrow \max_{x \in \mathbb{R}^m : \sqrt{W} x = 0} - \sum_{i=1}^{m} f_i(x_i).
\]

Distributed reformulation through dual problem

\[
\min_{\lambda \in \mathbb{R}^m} \sum_{i=1}^{m} f^*_i \left(\left[\sqrt{W} \lambda \right]_i \right) = \min_{\lambda \in \mathbb{R}^m} \sum_{i=1}^{m} \mathbb{E}_{Y_i \sim \mu_i} F^*_i \left(\left[\sqrt{W} \lambda \right]_i, Y_i \right).
\]

\(^1\)[Boyd et al.’11, Jakovetić et al.’15, Scaman et al.’17, Uribe et al.’17, Lan et al.’17]
Distributed stochastic gradient method in the dual

Change the variables $\xi := \sqrt{W} \lambda$.

SGD step for each node i: $\xi_i^{(k+1)} = \xi_i^{(k)} - \alpha \sum_{j=1}^{m} [W]_{ij} \nabla F_j^*(\xi_j, Y_j)$.

Our contribution: Acceleration and careful Primal-Dual analysis for solving the primal problem.
Experiments on MNIST dataset

\(k = 0 \)

\(k = 10 \)

\(k = 20 \)

\(k = 30 \)
Thank you!

Welcome to poster #15, Room 210 & 230 AB.