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Convergence	in	continuous	time

However, smooth convex optimization algorithms

cannot achieve faster rate than:
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Question: How to relate the convergence rate in continuous time ODE to
the convergence rate of a discrete optimization algorithm?
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Question: How to relate the convergence rate in continuous time ODE to
the convergence rate of a discrete optimization algorithm?

Our approach: Discretize the ODE with known Runge-Kutta integrators (e.g.
Euler, midpoint, RK44) and provide theoretical guarantees for convergence
rates.
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Main	theorem:
For	a	p-flat,	(s+2)-differentiable	convex	function,	if	we	discretize	the	ODE	with	
order-s Runge-Kutta integrator,	we	have



Main	theorem:

p-flat:

15

For	a	p-flat,	(s+2)-differentiable	convex	function,	if	we	discretize	the	ODE	with	
order-s Runge-Kutta integrator,	we	have



Main	theorem:

p-flat:

Order-s:	Discretization	error	scales	as																		,	h	is	the	step	size	.	

16

For	a	p-flat,	(s+2)-differentiable	convex	function,	if	we	discretize	the	ODE	with	
order-s Runge-Kutta integrator,	we	have



Main	theorem:

p-flat:

Order-s:	Discretization	error	scales	as																		;	h	is	the	step	size.	

17

For	a	p-flat,	(s+2)-differentiable	convex	function,	if	we	discretize	the	ODE	with	
order-s Runge-Kutta integrator,	we	have

Objective Integrator Rate

L-smooth	(p=2) RK44	(s=4)

(p=4) Midpoint(s=2)
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