Direct Runge-Kutta Discretization Achieves Acceleration

Jingzhao Zhang, Aryan Mokhtari, Suvrit Sra, Ali Jadbabaie

NeurIPS 2018

This work is supported by DARPA Lagrange Program under grant No. FA 8650-18-2-7838
Acceleration in first order convex optimization

Optimize smooth convex function:
\[
\min_{x \in \mathbb{R}^d} f(x)
\]
Acceleration in first order convex optimization

Optimize smooth convex function:

$$\min_{x \in \mathbb{R}^d} f(x)$$

Gradient Descent:

$$x_{k+1} = x_k - \eta \nabla f(x_k)$$
Acceleration in first order convex optimization

Optimize smooth convex function:

\[
\min_{x \in \mathbb{R}^d} f(x)
\]

Gradient Descent:

\[
x_{k+1} = x_k - \eta \nabla f(x_k)
\]

\[
\eta \to 0
\]

\[
\dot{x} = -\nabla f(x)
\]
Acceleration in first order convex optimization

Optimize smooth convex function:
\[
\min_{x \in \mathbb{R}^d} f(x)
\]

Gradient Descent:
\[
x_{k+1} = x_k - \eta \nabla f(x_k)
\]

As \(\eta \to 0\),
\[
\dot{x} = -\nabla f(x)
\]

\[
f(x(t)) - f(x^*) = \mathcal{O}\left(\frac{1}{t}\right)
\]
Acceleration in first order convex optimization

Optimize smooth convex function:

\[
\min_{x \in \mathbb{R}^d} f(x)
\]

Gradient Descent:

\[
x_{k+1} = x_k - \eta \nabla f(x_k)
\]

\[
\eta \rightarrow 0
\]

\[
\dot{x} = -\nabla f(x)
\]

\[
f(x(t)) - f(x^*) = \mathcal{O}\left(\frac{1}{t}\right)
\]

Accelerated Gradient Descent [Nesterov 1983]:

\[
x_{k+1} = y_k - \eta \nabla f(y_k)
\]

\[
y_{k+1} = x_{k+1} + \beta (x_{k+1} - x_k)
\]
Acceleration in first order convex optimization

Optimize smooth convex function:
\[\min_{x \in \mathbb{R}^d} f(x) \]

Gradient Descent:
\[x_{k+1} = x_k - \eta \nabla f(x_k) \]
\[\eta \to 0 \]
\[\dot{x} = -\nabla f(x) \]
\[f(x(t)) - f(x^*) = \mathcal{O}\left(\frac{1}{t}\right) \]

Accelerated Gradient Descent [Nesterov 1983]:
\[x_{k+1} = y_k - \eta \nabla f(y_k) \]
\[y_{k+1} = x_{k+1} + \beta (x_{k+1} - x_k) \]
\[\eta \to 0 \]
\[\ddot{x} + \frac{3}{t} \dot{x} + \nabla f(x) = 0 \]

Acceleration in first order convex optimization

Optimize smooth convex function:

\[\min_{x \in \mathbb{R}^d} f(x) \]

Gradient Descent:

\[x_{k+1} = x_k - \eta \nabla f(x_k) \]

\[\dot{x} = -\nabla f(x) \]

\[f(x(t)) - f(x^*) = \mathcal{O}\left(\frac{1}{t}\right) \]

\[\eta \to 0 \]

Accelerated Gradient Descent [Nesterov 1983]:

\[x_{k+1} = y_k - \eta \nabla f(y_k) \]

\[y_{k+1} = x_{k+1} + \beta (x_{k+1} - x_k) \]

\[\eta \to 0 \]

Convergence in continuous time

\[\ddot{x} + \frac{3}{t} \dot{x} + \nabla f(x) = 0 \quad f(x(t)) - f(x^*) = O\left(\frac{1}{t^2}\right) \]
Convergence in continuous time

\[\ddot{x} + \frac{3}{t} \dot{x} + \nabla f(x) = 0 \quad f(x(t)) - f(x^*) = \mathcal{O}\left(\frac{1}{t^2}\right) \]

\[t \to t^{p/2} \]

Arbitrary acceleration by change of variable

\[\ddot{x} + \frac{2p + 1}{t} \dot{x} + C p^2 t^{p-2} \nabla f(x) = 0 \quad f(x(t)) - f(x^*) = \mathcal{O}\left(\frac{1}{t^p}\right) \]

Convergence in continuous time

\[\ddot{x} + \frac{3}{t} \dot{x} + \nabla f(x) = 0 \tag{1} \]

\[f(x(t)) - f(x^*) = \mathcal{O}\left(\frac{1}{t^2}\right) \tag{2} \]

\[t \rightarrow t^{p/2} \]

Arbitrary acceleration by change of variable \[[\text{WWJ 2016}] \]

\[\ddot{x} + \frac{2p + 1}{t} \dot{x} + C_p t^{p-2} \nabla f(x) = 0 \tag{3} \]

\[f(x(t)) - f(x^*) = \mathcal{O}\left(\frac{1}{t^p}\right) \tag{4} \]

However, smooth convex optimization algorithms cannot achieve faster rate than: \[\mathcal{O}\left(\frac{1}{t^2}\right) \]

Question: How to relate the convergence rate in continuous time ODE to the convergence rate of a discrete optimization algorithm?
Question: How to relate the convergence rate in continuous time ODE to the convergence rate of a discrete optimization algorithm?

Our approach: Discretize the ODE with known Runge-Kutta integrators (e.g. Euler, midpoint, RK44) and provide theoretical guarantees for convergence rates.
Main theorem:

For a p-flat, $(s+2)$-differentiable convex function, if we discretize the ODE with order-s Runge-Kutta integrator, we have

$$f(x(t)) - f(x^*) = O(t^{-\frac{ps}{s+1}})$$
Main theorem:

For a p-flat, $(s+2)$-differentiable convex function, if we discretize the ODE with order-s Runge-Kutta integrator, we have

$$f(x(t)) - f(x^*) = O(t^{-\frac{ps}{s+1}})$$

p-flat:

- $p = 2$: Gradient is Lipschitz continuous.
- $p = 4$: $\|x\|_4^4$
- $p = N$: $\log(e^{-x})$
Main theorem:

For a \(p \)-flat, \((s+2)\)-differentiable convex function, if we discretize the ODE with order-\(s \) Runge-Kutta integrator, we have

\[
f(x(t)) - f(x^*) = O(t^{-\frac{ps}{s+1}})
\]

\(p \)-flat:

\[
\begin{align*}
p = 2 : & \text{ Gradient is Lipschitz continuous.} \\
p = 4 : & \|x\|_4^4 \\
p = N : & \log(e^{-x})
\end{align*}
\]

Order-\(s \): Discretization error scales as \(O(h^{s+1}) \), \(h \) is the step size.
Main theorem:

For a \(p \)-flat, \((s+2)\)-differentiable convex function, if we discretize the ODE with order-\(s \) Runge-Kutta integrator, we have

\[
f(x(t)) - f(x^*) = \mathcal{O}(t^{-\frac{ps}{s+1}})
\]

\(p \)-flat:

\[
\begin{align*}
p = 2 & : \text{Gradient is Lipschitz continuous. } \\
p = 4 & : \|x\|_4^4 \\
p = N & : \log(e^{-x})
\end{align*}
\]

Order-\(s \): Discretization error scales as \(\mathcal{O}(h^{s+1}) \); \(h \) is the step size.
Our poster session:

Thu Dec 6th 05:00 -- 07:00 PM
Room 210 & 230 AB
Poster Number: 9