Stochastic Chebyshev Gradient Descent for Spectral Optimization

Insu Han1 \quad Haim Avron2 \quad Jinwoo Shin1

1Korea Advanced Institute of Science and Technology (KAIST)
2Tel Aviv University

NeurIPS 2018 Motreal
Spectral Optimization

• For a scalar function $f : \mathbb{R} \rightarrow \mathbb{R}$ and matrix $A \in \mathbb{R}^{d \times d}$, spectral-sum is defined as:

\[
\Sigma_f(A) := \sum_{i=1}^{d} f(\lambda_i) = \text{tr}(f(A)),
\]

$\lambda_1, \lambda_2, \ldots, \lambda_d$: eigenvalues of A
Spectral Optimization

- For a scalar function $f : \mathbb{R} \to \mathbb{R}$ and matrix $A \in \mathbb{R}^{d \times d}$, the spectral-sum is defined as:

\[
\Sigma_f(A) := \sum_{i=1}^{d} f(\lambda_i) = \text{tr}(f(A)),
\]

$\lambda_1, \lambda_2, \ldots, \lambda_d$: eigenvalues of A

- If $f(x) = \log x$, it is the log-determinant
- If $f(x) = x^{-1}$, it is the trace of inverse
- If $f(x) = x^p$, it is the Schatten norm (the nuclear norm is the case $p = 1$)
- If $f(x) = x \log x$, it is the von-Neumann entropy
- If $f(x) = \exp(x)$, it is the Estrada index
- If $f(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{otherwise} \end{cases}$, it is rank or testing positive definiteness
Spectral Optimization

• For a scalar function \(f : \mathbb{R} \to \mathbb{R} \) and matrix \(A \in \mathbb{R}^{d \times d} \), spectral-sum is defined as:

\[
\Sigma_f(A) := \sum_{i=1}^{d} f(\lambda_i) = \text{tr}(f(A)),
\]

\(\lambda_1, \lambda_2, \ldots, \lambda_d \) : eigenvalues of \(A \)

• **Goal**: solve the optimization

\[
\min_{\theta} \Sigma_f(A(\theta)) + g(\theta)
\]

\(A(\theta) \) is a parameterized symmetric matrix, \(g \) is a simple function.

\(\Box \text{easy to compute } g, \nabla g \)
Challenges

• Gradient-based methods:

\[
\theta \leftarrow \theta - \eta \nabla \theta \left(\sum_f (A(\theta)) + g(\theta) \right)
\]

easy to compute

• Computing exact \(\nabla \theta \sum_f (A(\theta)) \) requires \(O(d^3) \) operations, \(d \) : matrix dimension
Challenges

• Gradient-based methods:
 \[\theta \leftarrow \theta - \eta \nabla_\theta \left(\Sigma_f(A(\theta)) + g(\theta) \right) \]
 easy to compute

• Computing exact \(\nabla_\theta \Sigma_f(A(\theta)) \) requires \(\mathcal{O}(d^3) \) operations, \(d \) : matrix dimension

• A recent work [1] can approximate \(\nabla_\theta \Sigma_f(A(\theta)) \) using \(\mathcal{O}(\|A\|_0) \) (# of non-zeros of \(A \))

• But, the gradient estimator is biased, which hurts stable/fast convergence of SGD

Challenges

• Gradient-based methods:

$$\theta \leftarrow \theta - \eta \nabla_\theta \left(\sum_f (A(\theta)) + g(\theta) \right)$$

easy to compute

• Computing exact $\nabla_\theta \sum_f (A(\theta))$ requires $O(d^3)$ operations, d : matrix dimension

• A recent work [1] can approximate $\nabla_\theta \sum_f (A(\theta))$ using $O(\|A\|_0)$ (# of non-zeros of A)

• But, the gradient estimator is biased, which hurts stable/fast convergence of SGD

“We propose a fast unbiased gradient estimator with convergence guarantees of SGD/SVRG”

Randomized Chebyshev Expansion

• Why biased? Spectral sums approximation [1] itself is biased since it combines
 (1) randomized trace estimator (unbiased)
 (2) Chebyshev polynomial expansion of $f \approx p_n$ (biased)

\[
\Sigma_f(A(\theta)) = \text{tr}(f(A)) = \mathbb{E}_v [v^\top f(A)v] \approx \mathbb{E}_v [v^\top p_n(A)v]
\]

(v: random vector)

Randomized Chebyshev Expansion

- Why biased? Spectral sums approximation [1] itself is biased since it combines
 (1) randomized trace estimator (unbiased)
 (2) Chebyshev polynomial expansion of \(f \approx p_n \) (biased)

\[
\sum f(A(\theta)) = \text{tr}(f(A)) = \mathbb{E}_v [v^\top f(A)v] \approx \mathbb{E}_v [v^\top p_n(A)v] \quad (v: \text{random vector})
\]

- To make it unbiased, we consider the following randomized Chebyshev expansions

\[
f(x) = \sum_{j=0}^{\infty} a_j T_j(x), \quad p_n(x) = \sum_{j=0}^{n} a_j T_j(x) \quad n \sim q_n \quad \text{random sampling}
\]

\[
\hat{p}_n(x) = \sum_{j=0}^{n} \frac{a_j}{1 - \sum_{i=0}^{j-1} q_i} T_j(x)
\]

- Then, \(\mathbb{E}_n [\hat{p}_n(x)] = f(x) \) and the gradient estimator with \(\hat{p}_n \) is unbiased 😊

Randomized Chebyshev Expansion

- Why biased? Spectral sums approximation [1] itself is biased since it combines
 (1) randomized trace estimator (unbiased)
 (2) Chebyshev polynomial expansion of $f \approx p_n$ (biased)

$$\Sigma_f(A(\theta)) = \text{tr}(f(A)) = \mathbb{E}_v[v^T f(A)v] \approx \mathbb{E}^\text{biased}_v[v^T p_n(A)v] \quad (v: \text{random vector})$$

- To make it unbiased, we consider the following randomized Chebyshev expansions

$$f(x) = \sum_{j=0}^{\infty} a_j T_j(x), \quad p_n(x) = \sum_{j=0}^{n} a_j T_j(x) \quad \text{random sampling}$$

$$\hat{p}_n(x) = \sum_{j=0}^{n} \frac{a_j}{1 - \sum_{i=0}^{j-1} q_i} T_j(x)$$

- Then, $\mathbb{E}_n[\hat{p}_n(x)] = f(x)$ and the gradient estimator with \hat{p}_n is unbiased 😊

- Question: what is a good distribution q_n?

Optimal Degree Distribution

• An estimator with small variance leads to faster convergence.
• **Problem**: minimize the variance of estimator given the expected degree by N

$$\min_{q_n} \text{Var}_n[\hat{p}_n] \quad \text{s.t.} \quad E_n[n] = N$$
Optimal Degree Distribution

- An estimator with small variance leads to faster convergence.
- **Problem**: minimize the variance of estimator given the expected degree by N

$$
\min_{q_n} \text{Var}_n [\hat{p}_n] \quad \text{s.t.} \quad E_n[n] = N
$$

Theorem [Han, Avron and Shin 2018]. The optimal degree distribution is

$$q_n^* = \begin{cases}
0 & \quad \text{for } n < N - k \\
1 - \frac{k(\rho - 1)}{\rho} & \quad \text{for } n = N - k \\
\frac{k(\rho - 1)^2}{\rho^{n+1}} & \quad \text{for } n > N - k \\
\end{cases}
$$

- $\rho > 1$: defined by f
- $k = \min\{N, \lfloor \frac{\rho}{\rho-1} \rfloor\}$

- Under the optimal distribution, we prove the convergence guarantees of SGD/SVRG

(see paper for Details)
Experimental Results for Two Applications

1. Matrix completion via **nuclear norm** regularization (left)
2. Gaussian process regression via **log-determinant** optimization (right)

![Graph](image1.png)

MovieLens 10M dataset, $f(x) = x^{1/2}$

![Graph](image2.png)

Szeged Humid dataset, $f(x) = \log x$
Thank you

Stochastic Chebyshev Gradient Descent for Spectral Optimization

Key words: Matrix optimization, Randomized Chebyshev truncation, Variance minimization

Poster # 6
Thursday Dec 6th 5:00 – 7:00 PM
@ Room 210 & 230 AB