A Simple Proximal Stochastic Gradient Method for Nonsmooth Nonconvex Optimization

Zhize Li, Jian Li

IIIS, Tsinghua University
https://zhizeli.github.io/

Dec 6th, NeurIPS 2018
Problem Definition

Machine learning problems, such as image classification or voice recognition, are usually modeled as a (nonconvex) optimization problem:

$$\min_{\theta} L(\theta).$$

Goal: find a good enough solution (parameters) $\hat{\theta}$, e.g., $\|\nabla L(\hat{\theta})\|^2 \leq \epsilon$
Problem Definition

We consider the more general **nonsmooth nonconvex** case:

\[
\min_x \Phi(x): = f(x) + h(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x) + h(x),
\]

Where \(f(x) \) and all \(f_i(x) \) are possibly nonconvex (loss on data samples), and \(h(x) \) is nonsmooth but convex (e.g., \(l_1 \) regularizer \(\|x\|_1 \) or indicator function \(I_C(x) \) for some convex set \(C \)).
Problem Definition

We consider the more general non-smooth non-convex case:

$$
\min_x \Phi(x) = f(x) + h(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x) + h(x),
$$

Where $f(x)$ and all $f_i(x)$ are possibly non-convex (loss on data samples), and $h(x)$ is non-smooth but convex (e.g., l_1 regularizer $\|x\|_1$ or indicator function $I_C(x)$ for some convex set C).

Benefit of $h(x)$: try to deal with the non-smooth and constrained problems.
Our Results

We propose a simple ProxSVRG+ algorithm, which reduces/improves several previous results (e.g., ProxGD, ProxSVRG/SAGA, SCSG).
Our Results

We propose a simple ProxSVRG+ algorithm, which recovers/improves several previous results (e.g., ProxGD, ProxSVRG/SAGA, SCSG).

Benefits: simpler algorithm, simpler analysis, better theoretical results,
Our Results

We propose a simple ProxSVRG+ algorithm, which recovers/improves several previous results (e.g., ProxGD, ProxSVRG/SAGA, SCSG).

Benefits: simpler algorithm, simpler analysis, better theoretical results, more attractive in practice (prefers moderate minibatch size, auto-adapt to local curvature, i.e., auto-switch to faster linear convergence $O(\cdot \log 1/\epsilon)$ in that regions although the objective function is generally nonconvex).
Theoretical Results

Our ProxSVRG+ prefers moderate minibatch size (red box) which is not too small for parallelism or vectorization and not too large for better generalization,

Figure 1: Stochastic first-order oracle (SFO) and proximal oracle (PO) complexity wrt. minibatch size b
Theoretical Results

Our ProxSVRG+ prefers moderate minibatch size (red box) which is not too small for parallelism or vectorization and not too large for better generalization, and uses less PO calls than ProxSVRG.

Figure 1: Stochastic first-order oracle (SFO) and proximal oracle (PO) complexity wrt. minibatch size b
Our ProxSVRG+ prefers moderate minibatch size (red box) which is not too small for parallelism or vectorization and not too large for better generalization, and uses less PO calls than ProxSVRG.

Recently, [Zhou et al., 2018] and [Fang et al., 2018] improve the SFO to $O(\frac{n^{1/2}}{\epsilon})$ in the smooth setting.
Experimental Results

Our ProxSVRG+ prefers much smaller minibatch size than ProxSVRG [Reddi et al., 2016], and performs much better than ProxGD and ProxSGD [Ghadimi et al., 2016].
Thanks!

Our Poster:
5:00-7:00 PM
Room 210 #5