Removing the Feature Correlation Effect of Multiplicative Noise

Zijun Zhang, Yining Zhang, Zongpeng Li

University of Calgary

• Multiplicative noise is widely used as a **regularization** technique for deep neural networks (DNNs). General form:

$$\tilde{x}_i = u_i x_i, \forall i \in \mathcal{H}^l.$$
(1)

The noise u_i satisfies $\mathbb{E}[u_i] = 1$, such that $\mathbb{E}[\tilde{x}_i] = x_i$.

• E.g., **dropout**. Let m_i be the dropout mask sampled from a Bernoulli distribution, Bern (p), then the equivalent multiplicative noise is given by

$$u_i = m_i/p. \tag{2}$$

 Multiplicative noise can adapt the scale of noise to the scale of features, which may contribute to its empirical success. • In a DNN, if noise is applied to the activations of layer *I*, the **pre-activations** (without biases) of the next layer is

$$z_j = \sum_{i \in \mathcal{H}'} w_{ij} \tilde{x}_i, \forall j \in \mathcal{H}'^{+1}.$$
(3)

• It can be decomposed into signal and noise components as

$$z_j^s = \sum_i w_{ij} x_i$$
, and $z_j^n = z_j - z_j^s = \sum_i w_{ij} (u_i - 1) x_i$. (4)

• To reduce the interference of noise, a simple strategy that can be learned is to **increase the signal-to-noise ratio** (SNR) of pre-activations.

The Feature Correlation Effect

• We can model the tendency of increasing SNR as an implicit objective function:

maximize
$$SNR(z_j) = \frac{\mathbb{E}\left[\left(z_j^s - \mathbb{E}\left[z_j^s\right]\right)^2\right]}{\mathbb{E}\left[\left(z_j^n\right)^2\right]}.$$
 (5)

• Maximizing SNR (z_j) is **equivalent** to

maximize
$$\frac{2\mathbb{E}\left[\sum_{i'\neq i}\sum_{i} (w_{ij}x_{i})(w_{i'j}x_{i'})\right]}{\mathbb{E}\left[\sum_{i} (w_{ij}x_{i})^{2}\right]} - \frac{\mathbb{E}\left[z_{j}^{s}\right]^{2}}{\mathbb{E}\left[\sum_{i} (w_{ij}x_{i})^{2}\right]}.$$
 (6)

 \bullet Training with multiplicative noise \Longrightarrow Increasing feature correlation

• An immediate solution is to truncate the gradient through the noise component:

maximize
$$SNR(z_j) = \frac{\mathbb{E}\left[\left(z_j^s - \mathbb{E}\left[z_j^s\right]\right)^2\right]}{\mathbb{E}\left[\left(z_j^n\right)^2\right]}.$$
 (7)

- However, maximizing SNR(z_j) is now equivalent to **increasing the magnitude** of the signal component.
- A better solution:

noise gradient truncation + batch normalization

• NCMN-1: decomposes batch-normalized pre-activations (before scaling and shifting), and truncates the gradient through the noise component.

$$\hat{z}_{j}^{\prime} = \mathsf{BN}\left(z_{j}^{s}
ight) + \mathsf{AsConst}\left(\mathsf{BN}\left(z_{j}
ight) - \mathsf{BN}\left(z_{j}^{s}
ight)
ight).$$
 (8)

• NCMN-0: approximates NCMN-1 by directly applying noise to batch-normalized preactivations.

$$\hat{z}'_j = \hat{z}^s_j + \operatorname{AsConst}\left(v_j \hat{z}^s_j\right). \tag{9}$$

• NCMN-0 is computationally efficient, and is as simple as dropout.

 NCMN-2: the decomposition is done once every two layers, works better on residual networks.

$$\hat{z}_{k}^{s} = \Psi_{k}^{\prime+2} \left(\Phi^{\prime+1} \left(\mathbf{x}^{\prime} \right) \right), \text{ and } \hat{z}_{k}^{n} = \Psi_{k}^{\prime+2} \left(\mathbf{u}^{\prime+1} \odot \Phi^{\prime+1} \left(\mathbf{u}^{\prime} \odot \mathbf{x}^{\prime} \right) \right) - \hat{z}_{k}^{s}, \quad (10)$$

$$\hat{z}'_k = \hat{z}^s_k + \operatorname{AsConst}\left(\hat{z}^n_k\right),\tag{11}$$

• NCMN-2 can be seen as a simplified version of **shake-shake regularization** that does not require extra residual branches.

Results - Feature Correlations

(a) Results on CIFAR-10.

(b) Results on CIFAR-100.

Results - Feature Correlations

Figure 2: Feature correlations of WRN-22-7.5 networks trained with different types of noise.

Table 1: CIFAR-10/100 error rates (%) of CNN-16-10 networks trained with different types of noise.

Table 2: CIFAR-10/100 error rates (%) of WRN-22-7.5 networks trained with different types of noise.

Noise type	CIFAR-10	CIFAR-100	Noise type	CIFAR-10	CIFAR-100
None	4.05 ± 0.05	19.22 ± 0.05	None	3.68 ± 0.02	19.29 ± 0.07
MN	3.76 ± 0.00	18.08 ± 0.03	MN	3.59 ± 0.06	18.60 ± 0.03
NCMN-0	3.51 ± 0.07	17.37 ± 0.05	NCMN-0	3.34 ± 0.02	17.05 ± 0.08
NCMN-1	$3.41 {\pm} 0.07$	17.55 ± 0.06	NCMN-1	3.02 ± 0.06	17.09 ± 0.10
NCMN-2	3.44 ± 0.03	18.16 ± 0.04	NCMN-2	$\boldsymbol{3.00}{\pm}0.05$	$\boldsymbol{16.70} {\pm} 0.13$

Table 3: More results on CIFAR-10/100 for comparison.

Model	Params	Epochs	Noise type	CIFAR-10	CIFAR-100
DenseNet-BC (250, 24) [2]	15.3M	300	None	3.62	17.60
ResNeXt-26 (2 $ imes$ 96d) [1]	26.2M	1800	Shake/None	2.86 /3.58	—
ResNeXt-29 (8 \times 64d) [1]	34.4M	1800	Shake/None	_	15.85 /16.34
WRN-28-10 [3]	36.5M	200	Dropout/None	3.89/4.00	18.85/19.25
DenseNet-BC (40,48)	3.9M	300	NCMN-0/None	3.51/4.07	17.68/19.92
CNN-16-3	1.6M	200	NCMN-0/None	4.47/5.10	21.92/24.97
CNN-16-10	17.1M	200	NCMN-1/None	3.41/4.05	17.55/19.22
WRN-22-2	1.1M	200	NCMN-0/None	4.56/5.19	23.54/25.90
WRN-22-7.5	15.1M	200	NCMN-2/None	3.00/3.68	16.70/19.29
WRN-22-5.4×2	15.5M	200	Shake/None	3.51/4.04	17.77/19.71
WRN-28-10	36.5M	200	NCMN-2/None	2.78 /3.70	15.86 /18.42

• We identified the feature correlation effect of multiplicative noise, and developed noncorrelating multiplicative noise as a better alternative to dropout for batch-normalized neural networks.

Poster

Thu Dec 6th 10:45 AM - 12:45 PM @ Room 210 & 230 AB #107

🚺 X. Gastaldi.

Shake-shake regularization of 3-branch residual networks.

In Workshop of International Conference on Learning Representations, 2017.

- G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten.
 Densely connected convolutional networks.
 In IEEE Conference on Computer Vision and Pattern Recognition, volume 1, page 3, 2017.
- 🔋 S. Zagoruyko and N. Komodakis.

Wide residual networks.

arXiv preprint arXiv:1605.07146, 2016.