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Multiplicative Noise

• Multiplicative noise is widely used as a regularization technique for deep neural networks

(DNNs). General form:

x̃i = uixi ,∀i ∈ Hl . (1)

The noise ui satisfies E [ui ] = 1, such that E [x̃i ] = xi .

• E.g., dropout. Let mi be the dropout mask sampled from a Bernoulli distribution, Bern (p),

then the equivalent multiplicative noise is given by

ui = mi/p. (2)

• Multiplicative noise can adapt the scale of noise to the scale of features, which may con-

tribute to its empirical success.
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Training with Noise

• In a DNN, if noise is applied to the activations of layer l , the pre-activations (without

biases) of the next layer is

zj =
∑
i∈Hl

wij x̃i ,∀j ∈ Hl+1. (3)

• It can be decomposed into signal and noise components as

z sj =
∑
i

wijxi , and znj = zj − z sj =
∑
i

wij (ui − 1) xi . (4)

• To reduce the interference of noise, a simple strategy that can be learned is to increase

the signal-to-noise ratio (SNR) of pre-activations.
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The Feature Correlation Effect

• We can model the tendency of increasing SNR as an implicit objective function:

maximize SNR (zj) =
E
[(
z sj − E

[
z sj
])2]

E
[(
znj
)2] . (5)

• Maximizing SNR (zj) is equivalent to

maximize
2E
[∑

i ′ 6=i

∑
i (wijxi) (wi ′jxi ′)

]
E
[∑

i (wijxi)
2
] −

E
[
z sj
]2

E
[∑

i (wijxi)
2
] . (6)

• Training with multiplicative noise =⇒ Increasing feature correlation
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Removing the Correlation Effect

• An immediate solution is to truncate the gradient through the noise component:

maximize SNR (zj) =
E
[(
z sj − E

[
z sj
])2]

E
[(
znj
)2] . (7)

• However, maximizing SNR (zj) is now equivalent to increasing the magnitude of the

signal component.

• A better solution:

noise gradient truncation + batch normalization

4



Non-Correlating Multiplicative Noise (NCMN)

• NCMN-1: decomposes batch-normalized pre-activations (before scaling and shifting),

and truncates the gradient through the noise component.

ẑ ′j = BN
(
z sj
)

+ AsConst
(
BN (zj)− BN

(
z sj
))

. (8)

• NCMN-0: approximates NCMN-1 by directly applying noise to batch-normalized pre-

activations.

ẑ ′j = ẑ sj + AsConst
(
vj ẑ

s
j

)
. (9)

• NCMN-0 is computationally efficient, and is as simple as dropout.
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Non-Correlating Multiplicative Noise

• NCMN-2: the decomposition is done once every two layers, works better on residual

networks.

ẑ sk = Ψl+2
k

(
Φl+1

(
xl
))

, and ẑnk = Ψl+2
k

(
ul+1 � Φl+1

(
ul � xl

))
− ẑ sk , (10)

ẑ ′k = ẑ sk + AsConst (ẑnk ) , (11)

• NCMN-2 can be seen as a simplified version of shake-shake regularization that does

not require extra residual branches.
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Results - Feature Correlations
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(a) Results on CIFAR-10.
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(b) Results on CIFAR-100.

Figure 1: Feature correlations of CNN-16-10 networks trained with different types of noise.
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Results - Feature Correlations
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(a) Results on CIFAR-10.
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(b) Results on CIFAR-100.

Figure 2: Feature correlations of WRN-22-7.5 networks trained with different types of noise.
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Results - Classification Accuracies

Table 1: CIFAR-10/100 error rates (%) of

CNN-16-10 networks trained with different types

of noise.

Noise type CIFAR-10 CIFAR-100

None 4.05±0.05 19.22± 0.05

MN 3.76±0.00 18.08± 0.03

NCMN-0 3.51±0.07 17.37±0.05

NCMN-1 3.41±0.07 17.55± 0.06

NCMN-2 3.44±0.03 18.16± 0.04

Table 2: CIFAR-10/100 error rates (%) of

WRN-22-7.5 networks trained with different

types of noise.

Noise type CIFAR-10 CIFAR-100

None 3.68±0.02 19.29± 0.07

MN 3.59±0.06 18.60± 0.03

NCMN-0 3.34±0.02 17.05± 0.08

NCMN-1 3.02±0.06 17.09± 0.10

NCMN-2 3.00±0.05 16.70±0.13
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Results - Classification Accuracies

Table 3: More results on CIFAR-10/100 for comparison.

Model Params Epochs Noise type CIFAR-10 CIFAR-100

DenseNet-BC (250, 24) [2] 15.3M 300 None 3.62 17.60

ResNeXt-26 (2×96d) [1] 26.2M 1800 Shake/None 2.86/3.58 —

ResNeXt-29 (8×64d) [1] 34.4M 1800 Shake/None — 15.85/16.34

WRN-28-10 [3] 36.5M 200 Dropout/None 3.89/4.00 18.85/19.25

DenseNet-BC (40, 48) 3.9M 300 NCMN-0/None 3.51/4.07 17.68/19.92

CNN-16-3 1.6M 200 NCMN-0/None 4.47/5.10 21.92/24.97

CNN-16-10 17.1M 200 NCMN-1/None 3.41/4.05 17.55/19.22

WRN-22-2 1.1M 200 NCMN-0/None 4.56/5.19 23.54/25.90

WRN-22-7.5 15.1M 200 NCMN-2/None 3.00/3.68 16.70/19.29

WRN-22-5.4×2 15.5M 200 Shake/None 3.51/4.04 17.77/19.71

WRN-28-10 36.5M 200 NCMN-2/None 2.78/3.70 15.86/18.42
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Conclusion

• We identified the feature correlation effect of multiplicative noise, and developed non-

correlating multiplicative noise as a better alternative to dropout for batch-normalized

neural networks.

Poster

Thu Dec 6th 10:45 AM – 12:45 PM @ Room 210 & 230 AB #107

11



References i

X. Gastaldi.

Shake-shake regularization of 3-branch residual networks.

In Workshop of International Conference on Learning Representations, 2017.

G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten.

Densely connected convolutional networks.

In IEEE Conference on Computer Vision and Pattern Recognition, volume 1, page 3,

2017.

S. Zagoruyko and N. Komodakis.

Wide residual networks.

arXiv preprint arXiv:1605.07146, 2016.

12


