Boolean Decision Rules via Column Generation

Sanjeeb Dash* Oktay Günlük* Dennis Wei*

IBM Research

Problem Statement

Learn Boolean rules for binary classification

- Disjunctive normal form (DNF, OR of ANDs)
- Conjunctive normal form (CNF, AND of ORs)

Rules with few clauses and conditions are interpretable

Optimize accuracy vs. simplicity using integer programming (IP)

Related Models

Preliminaries

Assume non-binary features have been binarized

- Categorical: "one-hot" coding (e.g. color=red, color=blue)
- Numerical: comparison with thresholds (e.g. blood pressure \leq 130, >130)

Main Challenge

Exponentially many possible clauses

• e.g. # accounts, # accounts AND debt, # accounts AND debt AND months since delinquency, ...

Previous works limited search using heuristics

Select clauses from exponentially large set

Master IP/LP

Solve only over small subsets

Restricted Master LP

Solve only over small subsets

Augment with improving clauses (columns)

Solve only over small subsets

Procedure and Optimality Guarantees

IPs solved using CPLEX

5 min time limit overall

Procedure and Optimality Guarantees

Accuracy-Complexity Trade-Off

Lines connect Pareto-efficient points

Column generation (CG) dominates on 8 of 16 datasets and is close on 2 others

Accuracy Maximization

accuracy

CG competitive with RIPPER [Cohen 1995]

CG can find simpler rules that are no less accurate (adult, bank, magic, FICO)

dataset	CG	BRS	АМ	BCD	RIPPER	CART	RF
adult	83.5	81.7	83.0	82.4	83.6	83.1	84.7
bank	90.0	87.4	90.0	89.7	89.9	89.1	88.7
gas	98.0	92.2	97.6	97.0	99.0	95.4	99.7
magic	85.3	82.5	80.7	80.3	84.5	82.8	86.6
mushroom	100.0	99.7	99.9	99.9	100.0	96.2	99.9
musk	95.6	93.3	96.9	92.1	95.9	90.1	86.2
FICO	71.7	71.2	71.2	70.9	71.8	70.9	73.1
complexity							
adult	88.0	39.1	15.0	13.2	133.3	95.9	
bank	9.9	13.2	6.8	2.1	56.4	3.0	
gas	123.9	22.4	62.4	27.8	145.3	104.7	
magic	93.0	97.2	11.5	9.0	177.3	125.5	
mushroom	17.8	17.5	15.4	14.6	17.0	9.3	
musk	123.9	33.9	101.3	24.4	143.4	17.0	
FICO	13.3	23.2	8.7	4.8	88.1	155.0	13

Conclusion

Accurate and interpretable Boolean classification rules

Column generation to efficiently search space of rules without restrictions

Optimality guarantees on training set

Superior accuracy-simplicity trade-offs

Poster #79, Room 210, 10:45 – 12:45 today