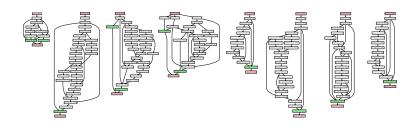
Neural Architecture Search with Bayesian Optimisation and Optimal Transport



Kirthevasan Kandasamy

Willie Neiswanger, Jeff Schneider, Barnabás Póczos, Eric Xing

Carnegie Mellon University

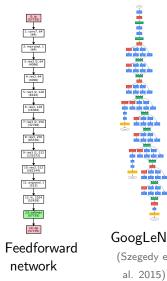
NeurIPS 2018

Montreal, Canada

Neural Architecture Search

Feedforward network

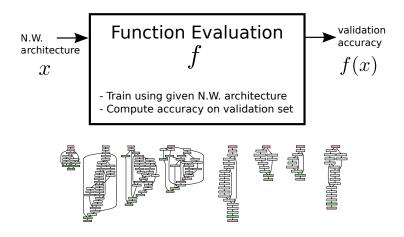
Neural Architecture Search



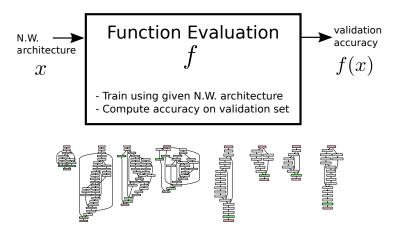
ResNet (He et al. 2016)

(Huang et al. 2017)

Neural architecture search is a zeroth order optimisation problem where each function evaluation is expensive.



Neural architecture search is a zeroth order optimisation problem where each function evaluation is expensive.



Bayesian Optimisation methods are well suited for optimising expensive blackbox functions.

Prior Work in Neural Architecture Search

Based on Reinforcement Learning:

(Baker et al. 2016, Zhong et al. 2017, Zoph & Le 2017, Zoph et al. 2017) RL is more difficult than optimisation (Jiang et al. 2016).

Based on Evolutionary Algorithms:

(Kitano 1990, Stanley & Miikkulainen 2002, Floreano et al. 2008, Liu et al. 2017, Miikkulainen et al. 2017, Real et al. 2017, Xie & Yuille 2017)

EA works well for optimising cheap functions, but not when function evaluations are expensive.

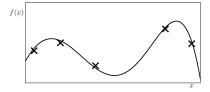
Other:

(Swersky et al. 2014, Mendoza et al. 2016, Negrinho & Gordon 2017, Jenatton et al. 2017)

Mostly search among feed-forward structures.

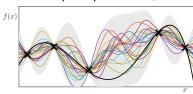
And a few more in the last two years ...

At each time step

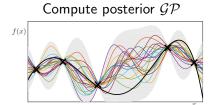


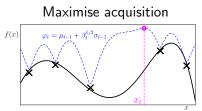
At each time step

Compute posterior $\mathcal{G}\mathcal{P}$

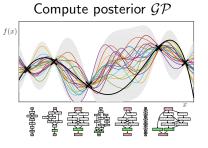


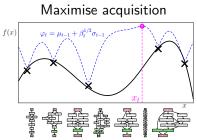
At each time step



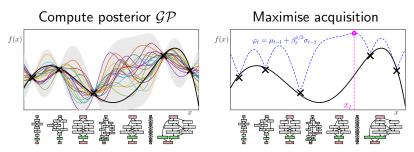


At each time step





At each time step

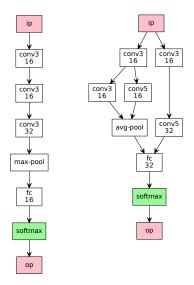


Bayesian optimisation for Neural Architecture Search

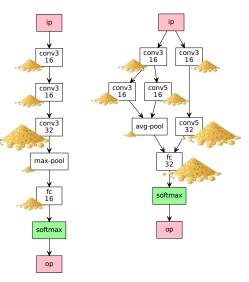
- ▶ Define a kernel between neural network architectures.
- Optimise acquisition in the space of neural networks.

4

OTMANN: A optimal transport based distance for neural architectures. Given this distance d, we use $e^{-\beta d}$ as the kernel.

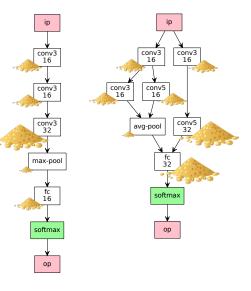


OTMANN: A optimal transport based distance for neural architectures. Given this distance d, we use $e^{-\beta d}$ as the kernel.



OTMANN: A optimal transport based distance for neural architectures.

Given this distance d, we use $e^{-\beta d}$ as the kernel.

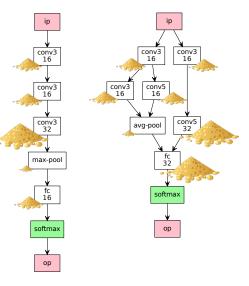


Penalty function:

- type of operation.
- structural position.

OTMANN: A optimal transport based distance for neural architectures.

Given this distance d, we use $e^{-\beta d}$ as the kernel.



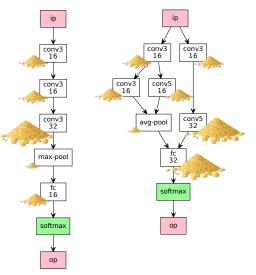
Penalty function:

- type of operation.
- structural position.

Can be computed via an optimal transport scheme.

OTMANN: A optimal transport based distance for neural architectures.

Given this distance d, we use $e^{-\beta d}$ as the kernel.



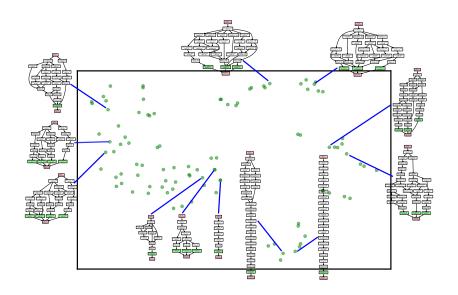
Penalty function:

- type of operation.
- structural position.

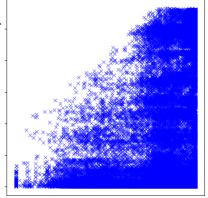
Can be computed via an optimal transport scheme.

Theorem: OTMANN is a pseudo-distance.

OTMANN: Illustration with tSNE Embeddings



OTMANN correlates with cross validation performance



OTMANN Distance

Optimising the acquisition

Modifiers to navigate search space:

inc_single, dec_single, inc_en_masse, dec_en_masse, remove_layer, wedge_layer, swap_layer, dup_path, skip_path.

Apply an evolutionary algorithm using these modifiers.

Optimising the acquisition

Modifiers to navigate search space:

inc_single, dec_single, inc_en_masse, dec_en_masse, remove_layer, wedge_layer, swap_layer, dup_path, skip_path.

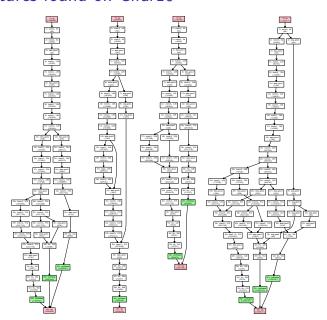
Apply an evolutionary algorithm using these modifiers.

Resulting procedure: NASBOT
Neural Architecture Search with Bayesian Optimisation and
Optimal Transport (Kandasamy et al. NeurIPS 2018)

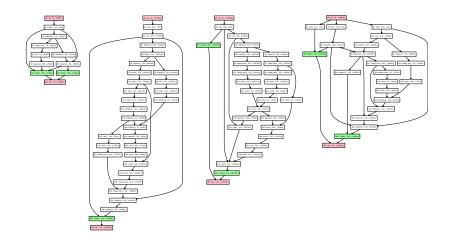
Test Error on 7 Datasets

Method	Blog (60K, 281)	Indoor (21K, 529)	Slice (54K, 385)	Naval (12K, 17)	Protein (46K, 9)	News (40K, 61)	Cifar10 Cifar10 (60K, 1K) 150K iters
RAND	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$egin{array}{c c} 0.115 \ \pm 0.023 \end{array}$	$0.758 \\ \pm 0.041$	$\begin{array}{c} 0.0103 \\ \pm \ 0.002 \end{array}$	$0.948 \\ \pm 0.024$	$ig egin{array}{c} 0.762 \ \pm 0.013 \end{array}$	$ \begin{vmatrix} 0.1342 & 0.0914 \\ \pm 0.002 & \pm 0.008 \end{vmatrix} $
EA	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\left \begin{array}{c} 0.147 \\ \pm 0.010 \end{array} \right $	$0.733 \\ \pm 0.041$	$0.0079 \\ \pm 0.004$	$\begin{array}{c} 1.010 \\ \pm 0.038 \end{array}$	$egin{array}{c} 0.758 \ \pm 0.038 \end{array}$	$\left \begin{array}{c c} 0.1411 & 0.0915 \\ \pm 0.002 & \pm 0.010 \end{array} \right $
TreeBO	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.759 ± 0.079	0.0102 ± 0.002	$0.998 \\ \pm 0.007$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{vmatrix} 0.1533 & 0.1121 \\ \pm 0.004 & \pm 0.004 \end{vmatrix} $
NASBOT	$ig egin{array}{c} 0.731 \ \pm 0.029 \ \end{array}$	$ig egin{array}{c} 0.117 \ \pm 0.008 \ \end{matrix}$	$\begin{array}{c c} 0.615 \\ \pm 0.044 \end{array}$	$0.0075 \\ \pm 0.002$	$\begin{array}{c} \textbf{0.902} \\ \pm \textbf{0.033} \end{array}$	$ig egin{array}{c} 0.752 \ \pm 0.024 \end{array}$	$\left \begin{array}{c c} 0.1209 & 0.0869 \\ \pm 0.003 & \pm 0.004 \end{array} \right $

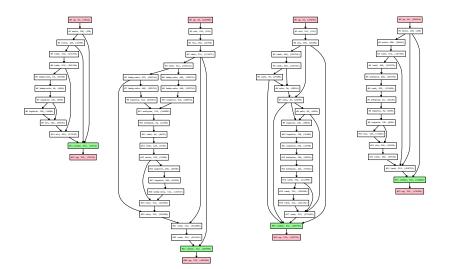
Architectures found on Cifar10



Architectures found on Indoor Location



Architectures found on Slice Localisation



Willie Neiswanger

Jeff Schneider

Barnabás Póczos

Eric Xing

Carnegie Mellon University

Auton Lab

Code: github.com/kirthevasank/nasbot

Poster: AB #166