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Neural architecture search is a zeroth order optimisation problem
where each function evaluation is expensive.
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- Compute accuracy on validation set
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Neural architecture search is a zeroth order optimisation problem
where each function evaluation is expensive.
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- Train using given N.W. architecture
- Compute accuracy on validation set

Bayesian Optimisation methods are well suited for optimising
expensive blackbox functions.



Prior Work in Neural Architecture Search

Based on Reinforcement Learning:
(Baker et al. 2016, Zhong et al. 2017, Zoph & Le 2017, Zoph et al. 2017)
RL is more difficult than optimisation (Jiang et al. 2016).

Based on Evolutionary Algorithms:

(Kitano 1990, Stanley & Miikkulainen 2002, Floreano et al. 2008, Liu et al. 2017,
Miikkulainen et al. 2017, Real et al. 2017, Xie & Yuille 2017)

EA works well for optimising cheap functions, but not when
function evaluations are expensive.

Other:

(Swersky et al. 2014, Mendoza et al. 2016, Negrinho & Gordon 2017, Jenatton et al.
2017)

Mostly search among feed-forward structures.

And a few more in the last two years ...



Bayesian Optimisation
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Bayesian Optimisation

At each time step
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Bayesian Optimisation

At each time step

Compute posterior GP Maximise acquisition
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Bayesian Optimisation

At each time step

Compute posterior GP

Maximise acquisition
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Bayesian optimisation for Neural Architecture Search

» Define a kernel between neural network architectures.

» Optimise acquisition in the space of neural networks.



OTMANN: A optimal transport based distance for neural architectures.

Given this distance d, we use e ?? as the kernel.
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OTMANN: A optimal transport based distance for neural architectures.

Given this distance d, we use e ?? as the kernel.

Penalty function:
- type of operation.
- structural position.
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OTMANN: A optimal transport based distance for neural architectures.

Given this distance d, we use e ?? as the kernel.

Penalty function:
- type of operation.
- structural position.

Can be computed via an
optimal transport scheme.
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OTMANN: A optimal transport based distance for neural architectures.

Given this distance d, we use e 79 as the kernel.

Penalty function:
- type of operation.
- structural position.

Can be computed via an
optimal transport scheme.

Theorem: OTMANN is
(oo | a pseudo-distance.
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OTMANN: lllustration with tSNE Embeddings




OTMANN correlates with cross validation performance

Difference in
Validation Error |

OTMANN Distance



Optimising the acquisition

Modifiers to navigate search space:
inc_single, dec_single, inc_en_masse, dec_en_masse, remove_layer,

wedge_layer, swap_layer, dup_path, skip_path.

Apply an evolutionary algorithm using these modifiers.



Optimising the acquisition

Modifiers to navigate search space:
inc_single, dec_single, inc_en_masse, dec_en_masse, remove_layer,
wedge_layer, swap_layer, dup_path, skip_path.

Apply an evolutionary algorithm using these modifiers.

Resulting procedure: NASBOT
Neural Architecture Search with Bayesian Optimisation and
Optimal Transport (Kandasamy et al. NeurlPS 2018)



Test Error on 7 Datasets

Method Blog Indoor Slice Naval Protein News Cifar10 Cifarl0
(60K,281)| (21K,529)| (54K,385)| (12K,17) | (46K,9) | (40K,61) | (60K,1K)| 150K iters
RAND 0.780 0.115 0.758 0.0103 0.948 0.762 0.1342 0.0914
+0.034 | £0.023 | £0.041 | £0.002 | £0.024 | £0.013 | +£0.002 | £ 0.008
EA 0.806 0.147 0.733 0.0079 | 1.010 0.758 0.1411 0.0915
+0.040 | £0.010 | +0.041 | +0.004 | +0.038 | +£0.038 | +0.002 | £0.010
TreeBO 0.928 0.168 0.759 0.0102 0.998 0.866 0.1533 0.1121
+0.053 | £0.023 | £0.079 | £0.002 | £0.007 | £0.085 | +0.004 | £ 0.004
NASBOT 0.731 0.117 0.615 0.0075 | 0.902 0.752 0.1209 | 0.0869
+0.029 | £0.008 | +£0.044 | +£0.002 | +£0.033 | +£0.024 | +£0.003 | +£0.004




Architectures found on Cifarl0




Architectures found on Indoor Location
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Architectures found on Slice Localisation
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