Improving Neural Program Synthesis with Inferred Execution Traces

Richard Shin¹ Illia Polosukhin² Dawn Song¹

¹ UC Berkeley ² NEAR Protocol

Poster: Room 210 & 230 AB #31

Background

- For program synthesis from input-output examples, end-to-end neural networks have become popular
- Current research trend: add better inductive bias to help model learn
- Intuitively, execution traces are a great inductive bias for program synthesis

Improving Neural Program Synthesis with Inferred Execution Traces. Richard Shin, Illia Polosukhin, Dawn Song. Poster: Room 210 & 230 AB #31

Background

- Program synthesis from **execution traces** should be an easier task:

- Strict superset of information in input-output example
- Contains detailed information about the desired program state at each step of execution
- Greater supervision about the effects of each elementary operation

Improving Neural Program Synthesis with Inferred Execution Traces. Richard Shin, Illia Polosukhin, Dawn Song. Poster: Room 210 & 230 AB #31

Main question:

Given input-output examples, can we *infer* execution traces automatically and use the *inferred* traces to better synthesize programs?

Our findings:

Yes. On the Karel domain, we achieve state-of-the-art results, improving accuracy for both simple and complex programs.

Our hypothesis:

Adding an inductive bias in the form of explicit trace inference improves program synthesis.

Karel the Robot

Simple programming language designed for teaching programming.

An imperative program controls an agent ("Karel the Robot") within a grid world.

Function: def run(): block

Conditional:

if (condition):
 block

if (condition):
 block
else:

block

Loops:

for i in range(count):
 body
while (condition):
 body
while (not condition):
 body

Actions:

move()
turnLeft()
turnRight()
putMarker()
pickMarker()

Conditions:

frontIsClear()
leftIsClear()
rightIsClear()
markerPresent()

Improving Neural Program Synthesis with Inferred Execution Traces. Richard Shin, Illia Polosukhin, Dawn Song. Poster: Room 210 & 230 AB #31

Summary of approach

Evaluation

- We used the same dataset as Bunel et al [1], consisting of
 - 1,116,854 training examples
 - 2,500 test examples

Each example contains the ground truth program and 6 input-output pairs.

- To train the models:
 - We train the I/O \rightarrow Trace model on 1,116,854 × 6 execution traces from the training set.
 - By running the trained I/O \rightarrow Trace model over the training data, we obtain inferred traces for each example.
 - We train the Trace \rightarrow Code model with the inferred traces from the I/O \rightarrow Trace model.
- Model receives **5** input-output pairs; 6th is held out.

[1] Rudy Bunel, Matthew Hausknecht, Jacob Devlin, Rishabh Singh, and Pushmeet Kohli. Leveraging Grammar and Reinforcement Learning for Neural Program Synthesis. ICLR 2018.

		То	p-1	Тор-50	
		Exact Match	Generalization	Guided Search	Generalization
Previous work	MLE (Bunel et al. 2018)	39.94%	71.91%	—	86.37%
	RL_beam_div_opt (Bunel et al. 2018)	32.71%	77.12%	—	85.38%
	$I/O \rightarrow Code$, MLE (reimpl. of row 1)	40.1%	73.5%	84.6%	85.8%
	$I/O \rightarrow Trace \rightarrow Code, MLE$	42.8 %	81.3%	<mark>88.8</mark> %	90.8%

		Top-1		Тор-50	
		Exact Match	Generalization	Guided Search	Generalization
Previous work	MLE (Bunel et al. 2018)	39.94%	71.91%	—	86.37%
	RL_beam_div_opt (Bunel et al. 2018)	32.71%	77.12%	—	85.38%
	$I/O \rightarrow Code$, MLE (reimpl. of row 1)	40.1%	73.5%	84.6%	85.8%
	$I/O \rightarrow Trace \rightarrow Code, MLE$	42.8 %	81.3%	<mark>88.8</mark> %	90.8%
		Ť			
	inferred program				
	textually matches the				
	ground truth				

		Top-1		Тор-50	
		Exact Match	Generalization	Guided Search	Generalization
Previous	MLE (Bunel et al. 2018)	39.94%	71.91%	_	86.37%
work	RL_beam_div_opt (Bunel et al. 2018)	32.71%	77.12%	—	85.38%
	$I/O \rightarrow Code$, MLE (reimpl. of row 1)	40.1%	73.5%	84.6%	85.8%
	$I/O \rightarrow Trace \rightarrow Code, MLE$	42.8 %	81.3%	<mark>88.8</mark> %	<mark>90.8</mark> %
	inferred program textually matches the ground truth		inferre execut 6 inpu	d program tes correctly t-output pair	on all s

		Тс	op-1	Тор-50	
		Exact Match	Generalization	Guided Search	Generalization
Previous work	MLE (Bunel et al. 2018)	39.94%	71.91%	_	86.37%
	RL_beam_div_opt (Bunel et al. 2018)	32.71%	77.12%	_	85.38%
	$I/O \rightarrow Code$, MLE (reimpl. of row 1)	40.1%	73.5%	84.6%	85.8%
	$I/O \rightarrow Trace \rightarrow Code, MLE$	42.8 %	81.3%	<mark>88.8</mark> %	90.8 %

whether *any* of the 50 beam search outputs executes correctly on all **6** input-output pairs

		То	p-1	Тор-50	
		Exact Match	Generalization	Guided Search	Generalization
Previous	MLE (Bunel et al. 2018)	39.94%	71.91%	_	86.37%
work	RL_beam_div_opt (Bunel et al. 2018)	32.71%	77.12%	—	85.38%
	$I/O \rightarrow Code$, MLE (reimpl. of row 1)	40.1%	73.5%	84.6%	85.8%
	$I/O \rightarrow Trace \rightarrow Code, MLE$	42.8 %	81.3%	<mark>88.8</mark> %	<mark>90.8</mark> %
				Ť	

- 1. Enumerate the top 50 program outputs in order using beam search
- 2. Test each candidate program on the 5 specifying input-output pairs
 - 3. Given the first program correct on those 5 pairs, see if it works correctly on the **held-out 6th program**

Slice	% of dataset	$\text{I/O} \rightarrow \text{Code}$	$\text{I/O} \rightarrow \text{Trace} \rightarrow \text{Code}$	<mark>Δ%</mark>
No control flow	26.4%	100.0%	100.0%	+0.0%
With conditionals	15.6%	87.4%	91.0%	<mark>+3.6%</mark>
With loops	29.9%	91.3%	94.3%	<mark>+3.0%</mark>
With conditionals and loops	73.6%	79.0%	84.8%	<mark>+5.8%</mark>
Program length 0–15	44.8%	99.5%	99.5%	+0.0%
Program length 15–30	40.7%	80.8%	86.9%	<mark>+6.1%</mark>
Program length 30+	14.5%	48.6%	61.0%	<mark>+12.4%</mark>

(all numbers are top-1 generalization)

