A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks

Kimin Lee¹ Kibok Lee² Honglak Lee³,² Jinwoo Shin¹,⁴

¹ Korea Advanced Institute of Science and Technology (KAIST)
² University of Michigan
³ Google Brain
⁴ Altrics

NeurIPS 2018 Montréal
Motivation: Detecting Abnormal Samples

- A classifier can provide a meaningful answer only if a test sample is reasonably similar to the training samples.

- E.g., training data = animal
Motivation: Detecting Abnormal Samples

• A classifier can provide a meaningful answer only if a test sample is reasonably similar to the training samples
 • However, it sees many unknown/unseen test samples in practice
 • E.g., training data = animal

[Diagram showing a classifier with images of a dog and a cat, and the classifier's output indicating 99% probability for each class.]
Motivation: Detecting Abnormal Samples

• A classifier can provide a meaningful answer only if a test sample is reasonably similar to the training samples
 • However, it sees many unknown/unseen test samples in practice
 • E.g., training data = animal

• It raises a critical concern when deploying the classifier in real-world systems
 • E.g., Rarely-seen items can cause the self-driving car accident

Deep neural networks
Sunflower \rightarrow Go straight \rightarrow Crash!!
Motivation: Detecting Abnormal Samples

• A classifier can provide a meaningful answer only if a test sample is reasonably similar to the training samples
 • However, it sees many unknown/unseen test samples in practice
 • E.g., training data = animal

• It raises a critical concern when deploying the classifier in real-world systems
 • E.g., Rarely-seen items can cause the self-driving car accident

• Our goal is to design the classifier to say “I don’t know”
Motivation: Detecting Abnormal Samples

- Detecting test samples drawn sufficiently far away from the training distribution statistically or adversarially

![Diagram showing test sample, deep classifier, and confidence score involving training distribution, unseen samples, and adversarial samples.](image)
Motivation: Detecting Abnormal Samples

- Detecting test samples drawn sufficiently far away from the training distribution statistically or adversarially

Test sample → Deep classifier → Confidence score → Unseen samples or Adversarial samples

How to define a confidence score
Motivation: Detecting Abnormal Samples

• Detecting test samples drawn sufficiently far away from the training distribution statistically or adversarially

• One can consider a posterior distribution, i.e., $P(y|x)$, from a classifier

• However, it is well known that the posterior distribution can be easily overconfident even for such abnormal samples [Balaji ‘17]
Motivation: Detecting Abnormal Samples

- Detecting test samples drawn sufficiently far away from the training distribution statistically or adversarially

- One can consider a posterior distribution, i.e., $P(y|x)$, from a classifier

- For the issue, we consider to model the data distribution, i.e., $P(x|y)$
Mahalanobis Distance-based Confidence Score

• Main idea: Post-processing a generative classifier
 • Given a pre-trained softmax classifier, we post-process a simple generative classifier on hidden feature spaces:

\[
P(f(x)|y = c) = \mathcal{N}(f(x)|\mu_c, \Sigma)
\]

• How to estimate the parameters?
 • Empirical class mean and covariance matrix

\[
\hat{\mu}_c = \frac{1}{N_c} \sum_{i:y_i = c} f(x_i), \quad \hat{\Sigma} = \frac{1}{N} \sum_{c} \sum_{i:y_i = c} (f(x_i) - \hat{\mu}_c)(f(x_i) - \hat{\mu}_c)^T
\]
 • Using training data \{\((x_1, y_1), \ldots, (x_N, y_N) \) \}
Mahalanobis Distance-based Confidence Score

- **Main idea: Post-processing a generative classifier**
 - Given a pre-trained softmax classifier, we post-process a simple generative classifier on hidden feature spaces:

 ![Diagram]

 - Why Gaussian? the posterior distribution of the generative classifier (with a tied covariance) is equivalent to the softmax classifier

 ![T-SNE of penultimate features]

- **Empirical observation**
 - ResNet-34 trained on CIFAR-10
 - Hidden features follow class-conditional unimodal distributions
Mahalanobis Distance-based Confidence Score

- **Main idea: Post-processing a generative classifier**
 - Given a pre-trained softmax classifier, we post-process a simple generative classifier on hidden feature spaces:

\[
X \rightarrow \mathbf{\cdot} \rightarrow f(x) \rightarrow \mathbf{\cdot} \rightarrow y
\]

- **Why Gaussian?** the posterior distribution of the generative classifier (with a tied covariance) is equivalent to the softmax classifier

- **Our main contribution: New confidence score**
 - **Mahalanobis distance** between a test sample and a closest class Gaussian

\[
M(x) = \max_c \log P(f(x)|y = c)
\]

\[
= \max_c - (f(x) - \hat{\mu}_c)^\top \widehat{\Sigma} (f(x) - \hat{\mu}_c)
\]
Experimental Results

• Application to detecting out-of-distribution samples
 • State-of-the-art baseline: ODIN [Liang’ 18]
 • Maximum value of a posterior distribution after post-processing
 • DenseNet-110 [Huang ‘17] trained on the CIFAR-100 dataset
 • Our method outperforms the ODIN

• Application to detecting the adversarial samples
 • State-of-the-art baseline: LID [Ma’ 18]
 • KNN based confidence score: Local Intrinsic Dimensionality
 • ResNet-34 [He’ 16] trained on the CIFAR-10 dataset
 • Our method outperforms the LID
Conclusion

• Deep generative classifiers have been largely dismissed recently
 • Deep discriminative classifiers (e.g., softmax classifier) typically outperform them for fully-supervised classification settings
Conclusion

• Deep generative classifiers have been largely dismissed recently
 • Deep discriminative classifiers (e.g., softmax classifier) typically outperform them for fully-supervised classification settings

• We found that the (post-processed) deep generative classifier can outperform the softmax classifier across multiple tasks:
 • Detecting out-of-distribution samples
 • Detecting adversarial samples
Conclusion

• Deep generative classifiers have been largely dismissed recently
 • Deep discriminative classifiers (e.g., softmax classifier) typically outperform them for fully-supervised classification settings

• We found that the (post-processed) deep generative classifier can outperform the softmax classifier across multiple tasks:
 • Detecting out-of-distribution samples
 • Detecting adversarial samples

• Other contributions in our paper
 • More calibration techniques: input pre-processing, feature ensemble
 • More applications: class-incremental learning
 • More evaluations: robustness of our method

• Poster session: Room 210 & 230 AB #30

Thanks for your attention