A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks

Kimin Lee1 \hspace{1cm} Kibok Lee2 \hspace{1cm} Honglak Lee3,2 \hspace{1cm} Jinwoo Shin1,4

1 Korea Advanced Institute of Science and Technology (KAIST)
2 University of Michigan
3 Google Brain
4 Altrics

NeurIPS 2018 Montreal
Motivation: Detecting Abnormal Samples

• A classifier can provide a meaningful answer only if a test sample is reasonably similar to the training samples

• E.g., training data = animal
Motivation: Detecting Abnormal Samples

• A classifier can provide a meaningful answer only if a test sample is reasonably similar to the training samples
 • However, it sees many unknown/unseen test samples in practice
 • E.g., training data = animal
Motivation: Detecting Abnormal Samples

- A classifier can provide a meaningful answer only if a test sample is reasonably similar to the training samples
 - However, it sees many unknown/unseen test samples in practice
 - E.g., training data = animal

- It is a critical issue when deploying the classifier in real-world systems
 - E.g., Rarely-seen items can cause the self-driving car accident

Deep neural networks

Sunflower → Go straight → Crash!!
Motivation: Detecting Abnormal Samples

- A classifier can provide a meaningful answer only if a test sample is reasonably similar to the training samples.
 - However, it sees many unknown/unseen test samples in practice.
 - E.g., training data = animal.

- It is a critical issue when deploying the classifier in real-world systems.
 - E.g., Rarely-seen items can cause the self-driving car accident.

- Our goal is to design the classifier to say “I don’t know.”
Motivation: Detecting Abnormal Samples

- Detecting test samples drawn sufficiently far away from the training distribution statistically or adversarially.

Test sample \rightarrow Deep classifier \rightarrow Confidence score \rightarrow Training distribution, e.g., animal \rightarrow Unseen samples or Adversarial samples
Motivation: Detecting Abnormal Samples

- Detecting test samples drawn sufficiently far away from the training distribution statistically or adversarially

Test sample → Deep classifier → Confidence score →

- Training distribution, e.g., animal
- Unseen samples
- Adversarial samples

How to define a confidence score
Motivation: Detecting Abnormal Samples

- Detecting test samples drawn sufficiently far away from the training distribution statistically or adversarially
- One can consider a posterior distribution, i.e., $P(y|x)$, from classifier
- However, it is well known that deep neural networks typically produce overconfident predictions even for such abnormal samples [Balaji ‘17]
Motivation: Detecting Abnormal Samples

• Detecting test samples drawn sufficiently far away from the training distribution statistically or adversarially

• One can consider a posterior distribution, i.e., $P(y|x)$, from classifier

• For the issue, we consider to model the data distribution, i.e., $P(x|y)$
Mahalanobis Distance-based Confidence Score

• Main idea: Post-processing a generative classifier
 • Given a pre-trained softmax classifier, we post-process a simple generative classifier on hidden feature spaces:

 \[P(f(x)|y = c) = \mathcal{N}(f(x)|\mu_c, \Sigma) \]

• How to estimate the parameters?
 • Empirical class mean and covariance matrix

 \[
 \hat{\mu}_c = \frac{1}{N_c} \sum_{i:y_i = c} f(x_i), \quad \hat{\Sigma} = \frac{1}{N} \sum_c \sum_{i:y_i = c} (f(x_i) - \hat{\mu}_c)(f(x_i) - \hat{\mu}_c)^T
 \]

 • Using training data \{ (x_1, y_1), \ldots, (x_N, y_N) \}
Mahalanobis Distance-based Confidence Score

• **Main idea: Post-processing a generative classifier**
 - Given a pre-trained softmax classifier, we post-process a simple generative classifier on hidden feature spaces:

\[P(f(x)|y = c) = \mathcal{N}(f(x)|\mu_c, \Sigma) \]

- **Why Gaussian?:** the posterior distribution of the generative classifier (with a tied covariance) is equivalent to the softmax classifier

• **Empirical observation**
 - ResNet-34 trained on CIFAR-10
 - Hidden features are fitted in class-conditional unimodal distributions
Mahalanobis Distance-based Confidence Score

• **Main idea: Post-processing a generative classifier**
 • Given a pre-trained softmax classifier, we post-process a simple generative classifier on hidden feature spaces:

 ![Diagram showing the process of post-processing a generative classifier on hidden feature spaces.]

 - **Why Gaussian?**: the posterior distribution of the generative classifier (with a tied covariance) is equivalent to the softmax classifier.

• **Our main contribution: New confidence score**
 • **Mahalanobis distance** between a test sample and a closest class Gaussian:

 $$M(x) = \max_c \log P(f(x)|y = c)$$

 $$= \max_c - (f(x) - \hat{\mu}_c)^\top \hat{\Sigma}(f(x) - \hat{\mu}_c)$$
Experimental Results

• Application to detecting out-of-distribution samples
 • State-of-the-art baseline: ODIN [Liang’ 18]
 • Maximum value of a posterior distribution after post-processing
 • DenseNet-110 [Huang ‘17] trained on the CIFAR-100 dataset
 • Our method outperforms the ODIN
Experimental Results

• Application to detecting out-of-distribution samples
 • State-of-the-art baseline: ODIN [Liang’ 18]
 • Maximum value of a posterior distribution after post-processing
 • DenseNet-110 [Huang ‘17] trained on the CIFAR-100 dataset
 • Our method outperforms the ODIN

• Application to detecting the adversarial samples
 • State-of-the-art baseline: LID [Ma’ 18]
 • KNN based confidence score: Local Intrinsic Dimensionality
 • ResNet-34 [He’ 16] trained on the CIFAR-10 dataset
 • Our method outperforms the LID
Conclusion

• Deep generative classifiers have been largely dismissed recently
 • Deep discriminative classifiers (e.g., softmax classifier) typically outperform for fully-supervised classification settings
Conclusion

• Deep generative classifiers have been largely dismissed recently
 • Deep discriminative classifiers (e.g., softmax classifier) typically outperform for fully-supervised classification settings

• We found that (post-processed) deep generative classifier can outperform the softmax classifier across multiple tasks:
 • Detecting out-of-distribution samples
 • Detecting adversarial samples
Conclusion

• Deep generative classifiers have been largely dismissed recently
 • Deep discriminative classifiers (e.g., softmax classifier) typically outperform for fully-supervised classification settings

• We found that (post-processed) deep generative classifier can outperform the softmax classifier across multiple tasks:
 • Detecting out-of-distribution samples
 • Detecting adversarial samples

• Other contributions in our paper
 • More calibration techniques: input pre-processing, feature ensemble
 • More applications: class-incremental learning
 • More evaluations: robustness of our method

• Poster session: Room 210 & 230 AB #30

Thanks for your attention