Identification and Estimation of Causal Effects from Dependent Data

Eli Sherman esherman@jhu.edu

with Ilya Shpitser

Johns Hopkins Computer Science

12/6/2018

Eli Sherman

Identification and Estimation of Causal Effects from Dependent Data

- Goal: learn about causality from data on interacting agents:
 - Online social networks, cluster randomized trials of villages or households, infectious diseases
- Major difficulty: units are dependent
- Example (Shalizi and Thomas¹): "If your friend Sam jumped off a bridge...²

¹Shalizi and Thomas 2011. ²Shutterfly ID 210011107

Eli Sherman

Identification and Estimation of Causal Effects from Dependent Data

- Goal: learn about causality from data on interacting agents:
 - Online social networks, cluster randomized trials of villages or households, infectious diseases
- Major difficulty: units are dependent
- Example (Shalizi and Thomas¹): "If your friend Sam jumped off a bridge...²

...would you jump too?"

¹Shalizi and Thomas 2011. ²Shutterfly ID 210011107

Eli Sherman

Identification and Estimation of Causal Effects from Dependent Data

- Example (Shalizi and Thomas³): "If your friend Sam jumped off a bridge, would you jump too?"
 - yes: want to imitate Sam because they're cool (social contagion)
 - yes: Sam infected you with a judgement-suppressing parasite (physical contagion)
 - yes: known shared interest in dangerous hobbies (observed homophily)
 - yes: unknown to analyst, both you and Sam are daredevils (latent homophily)
 - yes: you and Sam were both on the bridge as it started collapsing (external causation)
- In general, not possible to disentangle these

³Shalizi and Thomas 2011.

- Example (Shalizi and Thomas³): "If your friend Sam jumped off a bridge, would you jump too?"
 - yes: want to imitate Sam because they're cool (social contagion)
 - yes: Sam infected you with a judgement-suppressing parasite (physical contagion)
 - yes: known shared interest in dangerous hobbies (observed homophily)
 - yes: unknown to analyst, both you and Sam are daredevils (latent homophily)
 - yes: you and Sam were both on the bridge as it started collapsing (external causation)
- In general, not possible to disentangle these
 - Nevertheless, under some assumptions causal inference is possible!

³Shalizi and Thomas 2011.

A Motivating Social Networking Example

- Subject *i* spends time online A_i , leading to purchasing behavior Y_i
- This is mediated by participation in a social network M_i entangled with participation of *i*'s friends *j*
- Personal characteristics C_i act as confounders; unobserved confounding by H_i
- Counterfactual: if we artificially set *i*'s online time, how would this influence *j*'s behavior?

- This counterfactual query is complicated by:
 - Interference via $A_i \rightarrow M_j$, $A_i \rightarrow Y_j$
 - Symmetric dependence via M_i-M_j edge; all Ms marginally correlated so we have one sample
 - Y_i and A_i confounded by H_i (\rightarrow)

A Light Intro to Causal Inference⁵

- Wish to simulate randomized control trials
 - Compare hypothetical cases (A \leftarrow 1) and controls (A \leftarrow 0)
 - Often interested in mean difference $\beta = E[Y(1)] E[Y(0)]$
- Identification: is parameter β a function of observations?
 - Fundamental problem of causal inference: only observe assigned treatment for each unit⁴
 - Sometimes identification is possible, for example:
 - E[Y(1)] E[Y(0)] = E[E[Y|A = 1, W] E[Y|A = 0, W]]
 - Identified if W is observed and encapsulates all confounders of A and Y
 - Non-identification \implies ill-posed problem, even as $n \rightarrow \infty$
- Need models and assumptions for identification; we use graphical models

Chain Graphs and their Segregated Projections⁷

- Chain graphs represent models with
 - $A {\rightarrow} B$ directed causal relationship from A to B
 - A-B feedback process at equilibrium between A and B
- Segregated graphs represent chain graph with latent variables
 - $A \leftrightarrow B$ unmeasured confounding between A and B
- Complete identification algorithm
 - IN: segregated graph; OUT: estimable functional or 'failure'
 - Above demonstrates non-ID; can't disentangle effect A_i→Y_i from confounding A_i↔Y_i.
 - Algorithm extends ID algorithm for LV-DAGs⁶

⁶Tian and Pearl 2002; Shpitser and Pearl 2006.

⁷Lauritzen and Richardson 2002; Shpitser 2015.

Eli Sherman

• Complete identification algorithm

• Causal influence of *i*'s online time on behavior of friend *j* identified:

$$\sum_{\{C_1, C_2, M_1, M_2\}} \left[p(M_1, M_2 | a_1, a_2, C_1, C_2) \times \left[\sum_{A_2} p(Y_2 | a_1, A_2, M_2, C_2) p(A_2 | C_2) p(C_1) p(C_2) \right] \right]$$

- Failure means β is not identifiable in the model by *any* method
- Single sample inference with hidden variables
 - Gibbs sampling-based algorithm, 'Auto-G Computation'⁸
 - Experiments demonstrate consistency under correctly specified model

• The devil is in the details!

- Come see our poster in 10 minutes: 10:45 AM 12:45 PM in Room 210 & 230 AB #13
- Read the paper: Identification and Estimation of Causal Effects from Dependent Data

⁸Tchetgen Tchetgen, Fulcher, and Shpitser 2017.

Eli Sherman

Identification and Estimation of Causal Effects from Dependent Data

7 / 9

Works Cited I

Lauritzen, Steffen L. and Thomas S. Richardson (2002). "Chain graph models and their causal interpretations (with discussion)". In: Journal of the Royal Statistical Society: Series B 64, pp. 321–361. Pearl, Judea (2009). Causality: Models, Reasoning, and Inference. 2nd ed. Cambridge University Press. ISBN: 978-0521895606. Rubin, D. B. (1976). "Causal Inference and Missing Data (with discussion)". In: *Biometrika* 63, pp. 581–592. Shalizi, Cosma Rohilla and Andrew C Thomas (2011). "Homophily and contagion are generically confounded in observational social network studies". In: Sociological methods & research 40.2, pp. 211–239. Shpitser, Ilya (2015). "Segregated Graphs and Marginals of Chain Graph Models". In: Advances in Neural Information Processing Systems 28. Curran Associates. Inc.

Works Cited II

Shpitser, Ilya and Judea Pearl (2006). "Identification of Joint Interventional Distributions in Recursive Semi-Markovian Causal Models". In: Proceedings of the Twenty-First National Conference on Artificial Intelligence (AAAI-06). AAAI Press, Palo Alto.
Tchetgen Tchetgen, Eric J., Isabel Fulcher, and Ilya Shpitser (2017). Auto-G-Computation of Causal Effects on a Network. hhttps://arxiv.org/abs/1709.01577. Working paper.
Tian, Jin and Judea Pearl (2002). "A General Identification Condition for Causal Effects". In: Eighteenth National Conference on Artificial Intelligence, pp. 567–573. ISBN: 0-262-51129-0.