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Probabilistic graphical models

We consider inference in factor graphs with
joint distribution

m(X1.7) Hf;XI
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Task:
- Compute expectations w.rt. w(xq.7).

- Compute the normalizing constant Z.
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Sequential Monte Carlo

Sequential Monte Carlo (SMC) can be used for probabilistic graphical model inference via
sequential graph decompositions:

Christian A. Naesseth, Fredrik Lindsten and Thomas B. Schén. Sequential Monte Carlo methods for graphical
models. Advances in Neural Information Processing Systems 27, December, 2014.
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Twisted SMC

Dependencies on “future variables” are not taken into account!

Twisted intermediate targets:
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Twisted SMC

Dependencies on “future variables” are not taken into account!

Twisted intermediate targets:
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How do we choose the twisting functions?

Proposition (Optimal twisting). With

wita) = [ T] flow)drr

JEF\Ft

the SMC algorithm outputs i.i.d. draws from 7 and the normalizing constant estimate
is exact; 7=7 w.pl.
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How do we choose the twisting functions?

Proposition (Optimal twisting). With

wita) = [ T] flow)drr

JEF\Ft

the SMC algorithm outputs i.i.d. draws from 7 and the normalizing constant estimate
is exact; Z = Z w.p1.

Optimal twisting functions are intractable, but:

- by & 1pf can be computed by various deterministic inference methods
- Sub-optimality only affects efficiency, not consistency or unbiasedness

- Can be seen as a bias post-correction

5/6



Twisting functions via deterministic approximations

ex) Square lattice Ising
model
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Twisting functions via deterministic approximations

Loopy Belief Propagation Expectation Propagation Laplace Approximation

ex) Square lattice Ising | | ex) Topic model likeli- | | ex) Gaussian Markov ran-
model hood evaluation dom field
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Thank you for listening!

Come see the poster: #51

Code available at:

- github.com/freli@05/smc-pgm-twist
- github.com/helske/particlefield



