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Background

Graphical models: compact models of p(x1, . . . , xd)

x1 x2

x3 x4

sample−−−−−→




x1 x2 x3 x4
4.00 −1.14 0.20 −2.37
−1.05 0.35 −0.66 −0.39

...
...

...
...




Structure learning: what graph fits the data best?

?

x1 x2

x3 x4

estimate←−−−−−




x1 x2 x3 x4
4.00 −1.14 0.20 −2.37
−1.05 0.35 −0.66 −0.39

...
...

...
...
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Structure Learning: Where Are We?

MNs BNs Comments

constraint-based X X need faithfulness
score-based, local search X X combinatorial opt.

score-based, global search X† continuous opt.

†Breakthough in Markov Networks:

Huge success of methods like graphical lasso
Widely applied in various fields, e.g. bioinformatics

∗Challenges in Bayesian Networks:

Directed graph → asymmetric matrix
Acyclic graph → combinatorial constraint

Xun Zheng (CMU) DAGs with NO TEARS November 28, 2018 3 / 8



Structure Learning: Where Are We?

MNs BNs Comments

constraint-based X X need faithfulness
score-based, local search X X combinatorial opt.
score-based, global search X† ?∗ continuous opt.

†Breakthough in Markov Networks:

Huge success of methods like graphical lasso
Widely applied in various fields, e.g. bioinformatics

∗Challenges in Bayesian Networks:

Directed graph → asymmetric matrix
Acyclic graph → combinatorial constraint

Xun Zheng (CMU) DAGs with NO TEARS November 28, 2018 3 / 8



Structure Learning: Where Are We?

MNs BNs Comments
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tl;dr

max
G

score(G )

s.t. G ∈ DAG
⇐⇒

max
W

score(W )

s.t. h(W ) ≤ 0

(combinatorial ) (smooth )

Smooth Characterization of DAG
Such function exists: h(W ) = tr(eW ◦W )− d .
Moreover, simple gradient: ∇h(W ) = (eW ◦W )T ◦ 2W .
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NO TEARS

Available at: github.com/xunzheng/notears

30 lines (function, gradient) + 20 lines (optimize) ≈ 50 lines
Existing algorithms: � 1000 lines
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Results: Recovering Erdos-Renyi Graph
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Results: Recovering Scale-free Graph
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Summary

A smooth characterization of DAG:

h(W ) = tr(eW ◦W )− d ≤ 0 ⇐⇒ G (W ) ∈ DAG

Use existing solvers for constrained optimization problem:

max
W

score(W )

s.t. h(W ) ≤ 0

Bridge optimization and structure learning
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