Sequential Attend, Infer, Repeat:
Generative Modelling of Moving Objects

Adam R. Kosiorek1,2, Hyunjik Kim2,
Ingmar Posner1, Yee Whye Teh2

1Applied AI Lab, Oxford Robotics Institute
2Department of Statistics, University of Oxford

NeurIPS 2018
Attend, Infer, Repeat1

1Eslami et. al., “Attend, Infer, Repeat”, NIPS 2016.
Attend, Infer, Repeat\(^1\) (AIR):

\[X_t \]

\[\mathbf{z}_t \]

\[\mathbf{z}_t^4 \]

\(^1\) Eslami et. al., “Attend, Infer, Repeat”, *NIPS* 2016.
Attend, Infer, Repeat1 (AIR):

- Variational Autoencoder (VAE)

1 Eslami et. al., “Attend, Infer, Repeat”, \textit{NIPS} 2016.
Attend, Infer, Repeat\(^1\) (AIR):

- Variational Autoencoder (VAE)
- Decomposes an image into objects

\(^1\) Eslami et. al., “Attend, Infer, Repeat”, NIPS 2016.
Sequential Attend, Infer, Repeat: Generative Modelling of Moving Objects

Attend, Infer, Repeat\(^1\) (AIR):

- Variational Autoencoder (VAE)
- Decomposes an image into objects
- Explains each object with a separate latent variable

\(^1\)Eslami et. al., “Attend, Infer, Repeat”, NIPS 2016.
Attend, Infer, Repeat1 (AIR):

- Variational Autoencoder (VAE)
- Decomposes an image into objects
- Explains each object with a separate latent variable

Here, we have two objects with superscripts 1 and 4

1 Eslami et. al., “Attend, Infer, Repeat”, NIPS 2016.
Objects are explained by separate latent variables
Objects are explained by separate latent variables

what: Gaussian, how does it look like?
AIR: Latent Variables

Objects are explained by separate latent variables

what: Gaussian, how does it look like?
where: Gaussian, where and how big is it?
AIR: Latent Variables

Objects are explained by separate latent variables

what: Gaussian, how does it look like?
where: Gaussian, where and how big is it?
presence: Bernoulli, does it exist?
Sequential Attend, Infer, Repeat
Sequential Attend, Infer Repeat (SQAIR) extends AIR to image sequences.
Sequential Attend, Infer Repeat (SQAIR) extends AIR to image sequences

Like AIR: model objects with separate latent variables
Sequential Attend, Infer Repeat (SQAIR) extends AIR to image sequences

Like AIR: model objects with separate latent variables

Objects can appear and disappear in every frame
Sequential Attend, Infer, Repeat (SQAIR) extends AIR to image sequences. Like AIR: model objects with separate latent variables. Objects can appear and disappear in every frame. Here, object 4 appeared and object 3 disappeared in frame t.
SQAIR can model sequences of moving objects
SQAIR can model sequences of moving objects like this one.
SQAIR can model sequences of moving objects like this one. Any VAE could reconstruct it.
Sequential Attend, Infer, Repeat: Generative Modelling of Moving Objects

MNIST: Reconstructions

SQAIR can model sequences of moving objects like this one:

any VAE could reconstruct it:

one latent variable per object knows their location maintains identity (unlike AIR):
Once trained, we can sample from SQAIR

Check what the model learned
Once trained, we can sample from SQAIR

Check what the model learned

Object appearance does not change between frames
Once trained, we can sample from SQAIR

Check what the model learned

Object appearance does not change between frames

Motion is consistent with motion patterns in the training set
MNIST: Conditional Generation

Condition the model on three frames

Predict the next 97 frames by sampling from the prior
Condition the model on three frames

Predict the next 97 frames by sampling from the prior

For every conditioning sequence, we can imagine different rollouts
SQAIR vs AIR

Reconstruction from partial observations

SQAIR	AIR

![Images of reconstructed digits for SQAIR and AIR]
SQAIR vs AIR

Reconstruction from partial observations

SQAIR

AIR
Sequential Attend, Infer, Repeat: Generative Modelling of Moving Objects

SQAIR vs AIR

Reconstruction from partial observations

SQAIR

AIR

✓

✗
SQAIR vs AIR

Reconstruction from partial observations

SQAIR

AIR

Disentangling overlapping objects

SQAIR

AIR
Sequential Attend, Infer, Repeat: Generative Modelling of Moving Objects

SQAIR vs AIR

Reconstruction from partial observations

- **SQAIR**
- **AIR**

Disentangling overlapping objects

- **SQAIR**
- **AIR**

![Image showing reconstruction from partial observations and disentangling overlapping objects for SQAIR and AIR.](image-url)
Sequential Attend, Infer, Repeat: Generative Modelling of Moving Objects

SQAIR vs AIR

Reconstruction from partial observations

SQAIR

AIR

Disentangling overlapping objects

SQAIR

AIR

missing objects!
SQAIR vs AIR

Reconstruction from partial observations

SQAIR: ✔️
AIR: ❌

Disentangling overlapping objects

SQAIR: ✔️
AIR: ❌

missing objects!
Real World Data: Unsupervised Detection & Tracking of Pedestrians
DukeMTMC: Reconstructions

DukeMTMC dataset2 contains videos from static CCTV cameras

2Ristani et. al., “Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking”, ECCV workshop, 2016.
DukeMTMC: Reconstructions

DukeMTMC dataset\(^2\) contains videos from static CCTV cameras

Pre-process by removing backgrounds and inverting colours

\(^2\) Ristani et. al., “Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking”, \textit{ECCV workshop}, 2016.
DukeMTMC: Reconstructions

DukeMTMC dataset\(^2\) contains videos from static CCTV cameras

Pre-process by removing backgrounds and inverting colours

SQAIR learns to detect & track pedestrians without human supervision!

\(^2\) Ristani et. al., “Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking”, ECCV workshop, 2016.
DukeMTMC: Conditional Generation

SQAIR trained on sequences of five frames
DukeMTMC: Conditional Generation

SQAIR trained on sequences of five frames

• Condition the model on five frames
• Predict the next 15 frames by sampling from the prior
DukeMTMC: Conditional Generation

SQAIR trained on sequences of five frames

• Condition the model on five frames
• Predict the next 15 frames by sampling from the prior

Each row contains five different predictions for the same sequence
Sequential Attend, Infer, Repeat: Generative Modelling of Moving Objects

Code: /akosiorek/SQAIR

Poster #24