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Attend, Infer, Repeat

Attend, Infer, Repeat’ (AIR):
* Variational Autoencoder (VAE)

* Decomposes an image into objects

* Explains each object with a separate latent

variable

Here, we have two objects with
superscripts 1 and 4

"Eslami et. al., “Attend, Infer, Repeat”, NIPS 2016.
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AlIR: Latent Variables

Objects are explained by separate latent variables

what: Gaussian, how does it look like?
where: Gaussian, where and how big is it? @ —

presence:. Bernoulli, does it exist?
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SQAIR: Generative Model

Sequential Attend, Infer Repeat (SQAIR)
extends AIR to image sequences

Like AIR: model objects
with separate latent variables @

o
Decoder
&)

Objects can appear and

disappear in every frame @‘
| Decoder

Here, object 4 appeared and Decoder
object 3 disappeared in frame t e
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MNIST: Reconstructions

SQAIR can model sequences of moving objects

emsoe 0 BN AR
any VAE could reconstruct it H

one latent variable per object

<
SQAIR: knows their location E

maintains identity (unlike AIR)
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MNIST: Samples

Once trained, we can sample from SQAIR

Check what the model learned
Object appearance does not n -
change between frames 21 = /9
Motion is consistent with motion n
patterns in the training set ‘ o 2l =
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MNIST: Conditional Generation

Condition the model on three frames
Predict the next 97 frames % Az
by sampling from the prior .
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MNIST: Conditional Generation

Condition the model on three frames
Predict the next 97 frames Al
by sampling from the prior n

For every conditioning sequence, .

we can imagine different rollouts
L
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SQAIR vs AIR

Reconstruction from partial

observations

SQAIR
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SQAIR vs AIR
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SQAIR vs AIR
Reconstruction from partial Disentangling overlapping
observations objects
SQAIR SQAIR

AIR AIR
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Real World Data;
Unsupervised Detection & Tracking
of Pedestrians




Sequential Attend, Infer, Repeat: Generative Modelling of Moving Objects

i -
AN,

2Ristani et. al., "Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking”, ECCV workshop, 2016.

DukeMTMC: Reconstructions

DukeMTMC dataset? contains videos
from static CCTV cameras
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i -
AN,

2Ristani et. al., "Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking”, ECCV workshop, 2016.

DukeMTMC: Reconstructions

DukeMTMC dataset? contains videos
from static CCTV cameras

Pre-process by removing
backgrounds and inverting colours

SQAIR learns to detect & track
pedestrians without human
supervision!
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* Condition the model on five frames
* Predict the next 15 frames by
sampling from the prior
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DukeMTMC: Conditional Generation

SQAIR trained on sequences
of five frames

rATITITETE
TEEEN
[0 374 174 7P

* Condition the model on five frames
* Predict the next 15 frames by
sampling from the prior

Each row contains five different
predictions for the same sequence
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Code:
() /akosiorek/SQAIR

Poster #24


https://github.com/akosiorek/sqair
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