

Neural Information Processing Systems Foundation



# Text-Adaptive Generative Adversarial Networks: Manipulating Images with Natural Language

Seonghyeon Nam, Yunji Kim, Seon Joo Kim

Dept. of Computer Science, Yonsei University Seoul, South Korea

## Manipulating Images with Natural Language





Icons made by Freepik from www.flaticon.com

Manipulating Images with Natural Language





Icons made by Freepik from www.flaticon.com

## Manipulating Images with Natural Language



Icons made by Freepik from www.flaticon.com

## Related Work

- Existing methods rely heavily on sentence embedding vectors
- They fail to preserve text-irrelevant contents (e.g. background)
- Coarse multi-modal modeling is not enough for the disentanglement

This particular bird with a **red head and breast** and features grey wings.

This small bird has a **blue crown** and **white** belly.





Original [Reed et al.,

2016]

[Dong et al., 2017]

## Contribution

- Our key idea is word-level local discriminators for fine-grained training
- Our method effectively changes visual attributes while preserving text-irrelevant contents

This particular bird with a **red head and breast** and features **grey wings**.

This small bird has a **blue crown** and **white belly**.



2017]

2016]

## **Overview of TAGAN**



### Generator



This flower has petals that are *yellow* and are *very stringy*.

To preserve original contents, we add a reconstruction loss:  $L_{rec} = \|\mathbf{x} - G(\mathbf{x}, \mathbf{t})\|$ 

## Discriminator



The discriminator consists of

- 1. Unconditional discriminator  $\rightarrow$  Make image realistic
- 2. Text-adaptive discriminator  $\rightarrow$  Make image match the text

This flower has petals that are *yellow* and are *very stringy*.

#### **Text-Adaptive Discriminator**



1. Compute local discriminator scores

$$f_{\mathbf{w}_i}(\mathbf{v}) = \sigma(\underbrace{\mathbf{W}(\mathbf{w}_i)}_{\text{text}} \underbrace{\mathbf{v} + \mathbf{b}(\mathbf{w}_i)}_{\text{image}})$$

### **Text-Adaptive Discriminator**



1. Compute local discriminator scores

$$f_{\mathbf{w}_i}(\mathbf{v}) = \sigma(\mathbf{W}(\mathbf{w}_i) \cdot \mathbf{v} + \mathbf{b}(\mathbf{w}_i))$$

2. Compute text/image attentions

 $lpha_i:$  softmax weight for word i

 $\beta_{ij}: \begin{array}{c} \text{softmax weight for word } \textit{i}, \\ \text{and image feature level } \textit{j} \end{array}$ 

### **Text-Adaptive Discriminator**



1. Compute local discriminator scores

$$f_{\mathbf{w}_i}(\mathbf{v}) = \sigma(\mathbf{W}(\mathbf{w}_i) \cdot \mathbf{v} + \mathbf{b}(\mathbf{w}_i))$$

2. Compute text/image attentions

 $lpha_i:$  softmax weight for word i

 $\beta_{ij} : \text{softmax weight for word } i, \\ \text{and image feature level } j$ 

3. Aggregate the scores with attentions  $D(\mathbf{x}, \mathbf{t}) = \prod_{i=1}^{T} [\sum_{j} \beta_{ij} f_{\mathbf{w}_{i}, j}(\mathbf{v}_{j})]^{\alpha_{i}}$ 

## Manipulation Results on CUB-200

Original

This particular bird with a **red head and breast** and features **grey wings**.

This bird has **wings that are blue** and has a **white belly**.

A small bird with **white base** and **black stripes** throughout its belly, head, and feathers.



## Manipulation Results on Oxford-102

Original

The petals are **white** and the stamens are **light yellow**.

The petals of the flower have **yellow** and red stripes.

This flower has petals of **pink and** white color with yellow stamens.



## Qualitative Comparison

Original

[Dong et al., 2017]

[Xu et al., 2018]

Ours

This is a **black bird** with **gray and white wings** and a **bright yellow belly and chest**. This flower has **petals that are** white and has **patches of yellow**.



## Conclusion

- We propose a Text-Adaptive Generative Adversarial Network (TAGAN)
- Our method disentangles and manipulates fine-grained visual attributes
- Our method outperforms existing methods on CUB-200 and Oxford-102

Please visit our poster (#126) for more information

