Neural Tangent Kernel
Convergence and Generalization in Neural Networks

Arthur Jacot
arthur.jacot@epfl.ch

Franck Gabriel
franck.gabriel@epfl.ch

Clément Hongler
clement.hongler@epfl.ch
What happens during training?

One step of Gradient Descent

One datapoint x_0

Neural Tangent Kernel:

$$(\mathcal{I}^{(L)}_{x,y}) = \sum_{p=1}^{P} \frac{d}{d\theta_p} f_\theta(x) \frac{d}{d\theta_p} f_\theta(y)$$

two samples all parameters

Describes the effect of gradient descent on the network function
In the Infinite width limit:

- Deterministic
- Fixed in time
- Explicit formula

\[\mathcal{H}^{(L)}(x,y) \rightarrow \mathcal{H}^{(L)}_{\infty}(x,y) \]

as \(n_1, \ldots, n_{L-1} \rightarrow \infty \)

all hidden layers

Determined by the trajectory of the network function during training

Distribution at convergence \(t \rightarrow \infty \) \((L = 3)\)
Neural Networks ↔ Kernel methods

- Gradient Descent ↔ Kernel Gradient Descent
 - NTK-regularized gradient

- Convergence to a global min. ↔ Positive definite NTK
 - Proved when $\|x_i\|_2 = \|x_j\|_2$

- Least-squares loss ↔ Kernel ridge regression
 - MAP for NTK Gaussian prior
What happens inside a very wide network?

- The activations of the hidden neurons become independent
- The parameters and activations evolve less and less
- However all layers learn:

The sum of all microscopic changes yields a macroscopic effect