Loss Surfaces, Mode Connectivity, and Fast Ensembling of DNNs

Timur Garipov1,2 Pavel Izmailov3 Dmitrii Podoprikhin4
Dmitry Vetrov5 Andrew Gordon Wilson3

1Samsung AI Center in Moscow, 2Skolkovo Institute of Science and Technology, 3Cornell University, 4Samsung-HSE Laboratory, 5National Research University Higher School of Economics

Neural Information Processing Systems
Montreal, Canada

December 4, 2018
Loss Surfaces

ResNet-164, CIFAR-100
Loss Surfaces

ResNet-164, CIFAR-100
Finding Paths between Modes

- Weights of pretrained networks: \(\hat{w}_1, \hat{w}_2 \in \mathbb{R}^{|\text{net}|} \)

- Define parametric curve: \(\phi_\theta(\cdot) [0, 1] \rightarrow \mathbb{R}^{|\text{net}|} \)

 \[
 \phi_\theta(0) = \hat{w}_1, \quad \phi_\theta(1) = \hat{w}_2
 \]

- DNN loss function: \(\mathcal{L}(w) \)

- Minimize averaged loss w.r.t. \(\theta \)

\[
\minimize{\theta} \int_0^1 \mathcal{L}(\phi_\theta(t))dt = \mathbb{E}_{t \sim U(0, 1)} \mathcal{L}(\phi_\theta(t))
\]
Loss Surfaces

VGG-16, CIFAR-10

Train loss

Test error (%)
Fast Geometric Ensembles (FGE)

Learning Rate

75% training

Ensemble

Epoch

Distance

α₁

α₂

n

Test error (%)

0 0.5 1 1.5 2 2.5 3 3.5

FGE iteration number

0 0.5c 1c 1.5c 2c 2.5c 3c 3.5c
Ensembling Results

SSE = Huang et al., (‘‘Snapshot ensembles: Train 1, get m for free’’), ICLR 2017
Summary

- Local optima are connected by simple curves.
- To find these curves we minimize loss uniformly in expectation over a path from one mode to another.
- We are inspired by these insights to propose a fast ensembling algorithm.

PyTorch code released for both mode connectivity and FGE

Come to our poster #162!