Support Recovery for Orthogonal Matching Pursuit:
Upper and Lower bounds

Raghav Somani ¹, Chirag Gupta ², Prateek Jain ¹ & Praneeth Netrapalli ¹

¹Microsoft Research Lab - India

²Machine Learning Department, Carnegie Mellon University

December 6, 2018
Sparse Linear Regression (SLR)

\[\bar{x} = \arg \min_{\|x\|_0 \leq s^*} \|Ax - y\|_2 \]

- Unconditionally, NP hard.
- Tractable under the assumption of Restricted Strong Convexity (RSC).
- Fundamental quantity capturing hardness:
 - Standard optimization: Condition number
 \[\kappa = \text{smoothness} / \text{strong convexity} \]
 - Sparse optimization: Restricted Condition number
 \[\tilde{\kappa} = \text{restricted smoothness} / \text{restricted strong convexity} \]
Sparse Linear Regression (SLR)

\[\bar{x} = \arg \min_{\|x\|_0 \leq s^*} \|Ax - y\|_2^2 \]

- **Unconditionally, NP hard. 😞**
- **Tractable under the assumption of Restricted Strong Convexity (RSC). 😊**
- **Fundamental quantity capturing hardness:**
 - Standard optimization: Condition number
 - Smoothness
 - Strong convexity
 - Sparse optimization: Restricted Condition number
 - Restricted smoothness
 - Restricted strong convexity
Sparse Linear Regression (SLR)

\[\bar{x} = \arg \min_{\|x\|_0 \leq s^*} \| A x - y \|_2^2 \]

- Unconditionally, NP hard. 😞
- Tractable under the assumption of Restricted Strong Convexity (RSC). 😊
- Fundamental quantity capturing hardness:
 - Standard optimization: Condition number
 - Sparse optimization: Restricted Condition number

R. Somani, C. Gupta, P. Jain & P. Netrapalli
Sparse Linear Regression (SLR)

Unconditionally, NP hard. 😞

Tractable under the assumption of Restricted Strong Convexity (RSC). 😊

Fundamental quantity capturing hardness:
- Standard optimization: Condition number

$$\kappa = \frac{\text{smoothness}}{\text{strong convexity}}$$

- Sparse optimization: Restricted Condition number

$$\tilde{\kappa} = \frac{\text{restricted smoothness}}{\text{restricted strong convexity}}$$
Setup and Goals

We work under the model where

\[y = A \bar{x} + \eta \]

- Observations
- Measurement matrix
- \(s^* \)-sparse vector
- Noise

Goals of SLR

1. Bounding Generalization error/Excess Risk: \(G(x) = \frac{1}{n} \| A (x - \bar{x}) \|_2 \)
2. Support Recovery: Recover the support of \(\bar{x} \)

We study SLR under RSC assumption for OMP.
Setup and Goals

We work under the model where

\[y = A \bar{x} + \eta \]

- **Observations**
- Measurement matrix
- \(s^* \)-sparse vector
- Noise

Goals of SLR

1. **Bounding Generalization error/Excess Risk**

 \[G(x) = \frac{1}{n} \| A(x - \bar{x}) \|_2 \]

2. **Support Recovery**

 Recover the support of \(\bar{x} \)

We study SLR under RSC assumption for OMP.
Setup and Goals

We work under the model where

- Observations
- Measurement matrix
- s^*-sparse vector
- Noise

\[y = A \bar{x} + \eta \]

Goals of SLR

1. Bounding Generalization error/Excess Risk - $\mathcal{O}(n) = \frac{1}{n} \| A (x - \bar{x}) \|_2$
2. Support Recovery - Recover the support of \bar{x}

We study SLR under RSC assumption for OMP.
Setup and Goals

We work under the model where

- Observations
- Measurement matrix
- s^*-sparse vector
- Noise

\[y = A \bar{x} + \eta \]

Goals of SLR

1. Bounding Generalization error/Excess Risk
 \[G(x) = \frac{1}{n} \|A(x - \bar{x})\|_2 \]

2. Support Recovery
 - Recover the support of \bar{x}

We study SLR under RSC assumption for OMP.
Setup and Goals

We work under the model where

\[y = A \bar{x} + \eta \]

Observations \(y \)
Measurement matrix \(A \)
\(s^* \)-sparse vector \(\bar{x} \)
Noise \(\eta \)

Goals of SLR

1. **Bounding Generalization error/Excess Risk** - \(G(x) := \frac{1}{n} \| A(x - \bar{x}) \|_2^2 \).
2. **Support Recovery** - Recover the support of \(\bar{x} \).

We study SLR under RSC assumption for OMP.
Setup and Goals

We work under the model where

\[y = A \bar{x} + \eta \]

- Observations
- Measurement matrix
- \(s^* \)-sparse vector
- Noise

Goals of SLR

1. **Bounding Generalization error/Excess Risk** - \(G(x) := \frac{1}{n} \| A(x - \bar{x}) \|_2^2 \).

2. **Support Recovery** - Recover the support of \(\bar{x} \).

We study SLR under RSC assumption for OMP.
Setup and Goals

We work under the model where

- Observations
- Measurement matrix
- s^*-sparse vector
- Noise

\[y = A \bar{x} + \eta \]

Goals of SLR

1. **Bounding Generalization error/Excess Risk** - $G(x) := \frac{1}{n} \left\| A(x - \bar{x}) \right\|_2^2$.

2. **Support Recovery** - Recover the support of \bar{x}.

We study SLR under RSC assumption for OMP.
Orthogonal Matching Pursuit

- Incremental Greedy algorithm
- Popular and easy to implement
- Widely studied in literature

\[\hat{x}_{k+1} \text{ iteratively selected greedily} \]
Known results and our contribution

Upper bound

<table>
<thead>
<tr>
<th>Known Generalization bound</th>
<th>(\propto \frac{1}{n} \sigma^2 s^* \tilde{\kappa}^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Our Generalization bound</td>
<td>(\propto \frac{1}{n} \sigma^2 s^* \tilde{\kappa} \log \tilde{\kappa})</td>
</tr>
</tbody>
</table>

Lower bound

<table>
<thead>
<tr>
<th>Known Generalization bound</th>
<th>(\propto \frac{1}{n} \sigma^2 s^* \tilde{\kappa})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Our Generalization bound</td>
<td>(\propto \frac{1}{n} \sigma^2 s^* \tilde{\kappa})</td>
</tr>
</tbody>
</table>

- **Support Expansion**
 - Known \(\propto s^* \tilde{\kappa}^2 \)
 - Our's \(\propto s^* \tilde{\kappa} \log \tilde{\kappa} \)

Unconditional lower bounds for OMP.
Support recovery guarantees and its lower bounds.
Known results and our contribution

<table>
<thead>
<tr>
<th>Upper bound</th>
<th>Lower bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{1}{n} \sigma^2 s^* \tilde{\kappa}^2)</td>
<td>(\frac{1}{n} \sigma^2 s^* \tilde{\kappa})</td>
</tr>
</tbody>
</table>

Known Generalization bound \(\propto \)

Our Generalization bound \(\propto \)

- Unconditional lower bounds for OMP.
- Support recovery guarantees and its lower bounds.

Support Expansion

Knowing \(\propto \)

Our’s \(\propto \)

\(s^* \tilde{\kappa}^2 \)

\(s^* \tilde{\kappa} \log \tilde{\kappa} \)
Known results and our contribution

<table>
<thead>
<tr>
<th></th>
<th>Upper bound</th>
<th>Lower bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Known Generalization bound</td>
<td>$\propto \frac{1}{n} \sigma^2 s^* \tilde{\kappa}^2$</td>
<td>$\propto \frac{1}{n} \sigma^2 s^* \tilde{\kappa}$</td>
</tr>
<tr>
<td>Our Generalization bound</td>
<td>$\propto \frac{1}{n} \sigma^2 s^* \tilde{\kappa} \log \tilde{\kappa}$</td>
<td>$\propto \frac{1}{n} \sigma^2 s^* \tilde{\kappa}$</td>
</tr>
</tbody>
</table>

- Unconditional lower bounds for OMP.
- Support recovery guarantees and its lower bounds.

Support Expansion

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Known</td>
<td>$s^* \tilde{\kappa}^2$</td>
</tr>
<tr>
<td>Our’s</td>
<td>$s^* \tilde{\kappa} \log \tilde{\kappa}$</td>
</tr>
</tbody>
</table>
A key idea

\[f(x) = \|Ax - y\|_2^2 \]

- If any support is unrecovered, then there is a large additive decrease.
- \(f(x) \geq 0 \implies \) support recovery will happen soon.
- Recovery with small support \(\implies \) small generalization error.
A key idea

\[f(x) = \|Ax - y\|^2 \]

- If *any* support is unrecovered, then there is a *large additive decrease*.
- \(f(x) \geq 0 \implies \) support recovery will happen soon.
- Recovery with small support \(\implies \) small generalization error.
A key idea

\[f(x) = \|Ax - y\|_2^2 \]

- If *any* support is unrecovered, then there is a *large additive decrease*.
- \(f(x) \geq 0 \implies \) support recovery will happen soon.
- Recovery with small support \(\implies \) small generalization error.
A key idea

\[f(x) = \| Ax - y \|_2^2 \]

- If *any* support is unrecovered, then there is a *large additive decrease*.
- \(f(x) \geq 0 \implies \) support recovery will happen soon.
- Recovery with small support \(\implies \) small generalization error.
Thank You!