Binary Classification from Positive-Confidence Data

Takashi Ishida^{1,2} Gang Niu² Masashi Sugiyama^{2,1}

¹ The University of Tokyo ² RIKEN

NeurIPS 2018, Canada, December 6th, 2018

Introduction

Ordinary classification: Learn a binary classifier with *both* **positive** and **negative** training data.

Research question:

Can we learn a binary classifier from *only* **positive** data?

Without any **negative** data, or even **unlabeled** data?

Related Works

One-class classification

- **Describe** the positive class by clustering-related methods
- Cannot tune hyper-parameters for maximizing the generalization ability

Positive-unlabeled classification

- Additional unlabeled data from marginal distribution
 - Assumes that the class prior p(y) is known

Main Idea

Equip positive data with confidence:

Example: 95% DOG (5% WOLF)

Main message of the paper:

- If you can equip positive data with confidence (positive-confidence), you can learn a binary classifier with optimal convergence rate!
 - Positive-confidence includes the information of the negative distribution → allows us to discriminate between positive/negative classes.
- Positive-confidence (Pconf) classification.

Empirical Risk Minimization (ERM) in Binary Classification
 Train a binary classifier g(x) so that the classification risk R(g) is minimized:

$$R(g) = \mathbb{E}_{p(\mathbf{x}, y)}[\ell(yg(\mathbf{x}))]$$

- ▶ Input $x \in \mathbb{R}^d$ and its class label $y \in \{\pm 1\}$ follows p(x, y).
- ▶ $\mathbb{E}_{p(x,y)}$ denotes expectation over p(x, y), $\ell(z)$ is loss function

Setting of Pconf Classification

Issue: We do not have data from p(x, y)!

Only have positives equipped with confidence: $\mathcal{X} := \{\mathbf{x}_i, \mathbf{r}_i\}_{i=1}^n$

- > x_i is positive data drawn independently from p(x|y = +1).
- > r_i is the positive-confidence given by $r_i = p(y = +1|\mathbf{x}_i)$.

Main Contribution

Theorem

Classification risk can be expressed as

$$R(g) = p(y = +1) \cdot \mathbb{E}_{p(x|y=+1)}\left[\ell(g(x)) + \frac{1-r(x)}{r(x)}\ell(-g(x))
ight],$$

if we have $r(x) \neq 0$ for all x sampled from p(x), where r(x) = p(y = +1|x).

Leads to a theoretically-grounded way of objective function design for Pconf classification!

Summary of the Paper

- Propose a novel setting/algorithm for classification from only positive data equipped with confidence
 - Establish an ERM counterpart to binary classification for this setting
- Confirm the potential problem of a naive objective and prove the optimal convergence rate of the proposed ERM objective
- Validate the proposed ERM objective with broad experiments

Our poster @ Room 210 & 230 AB #97