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• Visualize effects in 1D regression:
• Training data (x,y) black points.

• Prior function p(x) blue line.

• Trainable function f(x) dotted line.
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• Stylized “chain” domain testing “deep exploration”:
- State = N x N grid, observations 1-hot.
- Start in top left cell, fall one row each step.
- Actions {0,1} map to left/right in each cell.
- “left” has reward = 0, “right” has reward = -0.1/N

- … but if you make it to bottom right you get +1.

• Only one policy (out of more than 2N) has positive return. 

• ε-greedy / Boltzmann / policy gradient / are useless. 

• Algorithms with deep exploration can learn fast! 
[1] “Deep Exploration via Randomized Value Functions”
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• Compare DQN+ε-greedy vs BootDQN+prior.

• Heat map shows estimated value of each state.

• DQN+ε-greedy gets stuck on the left, gives up. 

• BootDQN+prior hopes something is out there, keeps 
exploring potentially-rewarding states… learns fast!

1
K

K

∑
k=1

max
α

Qk(s, α)• Define ensemble average:

• Red line shows exploration path taken by agent. 
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