Meta-Reinforcement Learning of Structured Exploration Strategies

Abhishek Gupta, Russell Mendonca, YuXuan Liu, Pieter Abbeel, Sergey Levine
Human Exploration vs Robot Exploration
Human Exploration vs Robot Exploration
Human Exploration vs Robot Exploration
Exploration Informed by Prior Experience
Exploration Informed by Prior Experience
Exploration Informed by Prior Experience

Desired:
- Effective exploration for sparse rewards
- Quick adaptation for new tasks
Key Insights in MAESN

1. Explore with random but structured behaviors (exploration)
Key Insights in MAESN

1. Explore with random but structured behaviors (exploration)

2. Explicitly train for quick learning on new tasks (adaptation)
Key Insights in MAESN

1. Explore with random but structured behaviors (exploration)

2. Explicitly train for quick learning on new tasks (adaptation)
1. Explore with random but structured behaviors (exploration)

2. Explicitly train for quick learning on new tasks (adaptation)
1. Explore with random but structured behaviors (exploration)

2. Explicitly train for quick learning on new tasks (adaptation)
Structured exploration: pick an intention, execute for entire episode. Explore across different intentions.
Structured stochasticity introduced through latent conditioned policy

Train latent space to capture prior task distribution
Beyond capturing task distribution, train for quick adaptation via meta-learning
Beyond capturing task distribution, train for quick adaptation via meta-learning.
Meta-Training Latent Spaces

Beyond capturing task distribution, train for quick adaptation via meta-learning.
Beyond capturing task distribution, train for quick adaptation via meta-learning.
Beyond capturing task distribution, train for quick adaptation via meta-learning.

Train with algorithm based on Model Agnostic Meta-Learning\[1\]

Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks, Finn et al ICML 2017
Experiments: Robotic Manipulation

Random Exploration
Experiments: Robotic Manipulation

Random Exploration

MAESN exploration
Experiments: Robotic Manipulation

Random Exploration

MAESN exploration
Experiments: Legged Locomotion

Random Exploration
Experiments: Legged Locomotion

Random Exploration

MAESN exploration
Experiments: Legged Locomotion

Random Exploration

MAESN exploration
Quick Learning of New Tasks

- Learns very quickly
- Higher asymptotic reward than prior methods
- Better exploration
Quick Learning of New Tasks

- Learns very quickly
- Higher asymptotic reward than prior methods
- Better exploration
Quick Learning of New Tasks

- Learns very quickly
- Higher asymptotic reward than prior methods
- Better exploration
Quick Learning of New Tasks

- Learns very quickly
- Higher asymptotic reward than prior methods
- Better exploration
Thank You!

Russell Mendonca YuXuan Liu Pieter Abbeel Sergey Levine

Please come visit our poster at
Room 210 and 230, AB #134

Find code and paper online at https://sites.google.com/view/meta-explore/