Breaking the Curse of Horizon: Infinite-Horizon Off-Policy Estimation

Qiang Liu† Lihong Li‡ Ziyang Tang† Dengyong Zhou‡

† Department of Computer Science, The University of Texas at Austin
‡ Google Brain (KIR)
Off-Policy Reinforcement Learning

Off-Policy Evaluation: Evaluate a new policy π by only using data from old policy π_0.

Widely useful when running new RL policies is costly or impossible, due to high cost, risk, or ethics, legal concerns:

- Healthcare
- Robotic & Control
- Advertisement, Recommendation
“Curse of Horizon”

- **Importance Sampling (IS):** Given trajectory \(\tau = \{s_t, a_t\}_{t=1}^T \sim \pi_0, \)

\[
R_\pi = \mathbb{E}_{\tau \sim \pi_0} [w(\tau)R(\tau)], \quad \text{where} \quad w(\tau) = \prod_{t=0}^{T} \frac{\pi(a_t|s_t)}{\pi_0(a_t|s_t)}
\]

- **The Curse of Horizon:**
 - The IS weights \(w(\tau) \) are **product of** \(T \) **terms**; \(T \) is horizon length.
 - Variance can **grow exponentially with** \(T \).
 - **Problematic for infinite horizon problems** (\(T = \infty \)).
Breaking the Curse

Key: Apply IS on \((s, a)\) pairs, not the whole trajectory \(\tau\):

\[
R_\pi = \mathbb{E}_{(s,a) \sim d_{\pi_0}} [w(s, a) r(s, a)],
\]

where

\[
w(s, a) = \frac{d_\pi(s, a)}{d_{\pi_0}(s, a)},
\]

where \(d_\pi(s, a)\) is the stationary / average visitation distribution of \((s, a)\) under policy \(\pi\).

Stationary density ratio \(w(s, a)\):

- is NOT product of \(T\) terms.
- can be small even for infinite horizon (\(T = \infty\)).
- But is more difficult to estimate.
Main Algorithm

1. Estimate density ratio by a **new minimax objective**:

 \[\hat{w} = \min_{w \in \mathcal{W}} \max_{f \in \mathcal{F}} \hat{L}(w, f, \mathcal{D}_{\pi_0}) \]

2. Value estimation by IS:

 \[\hat{R}_\pi = \mathbb{E}_{(s,a) \sim \mathcal{D}_{\pi_0}} [\hat{w}(s, a)r(s, a)] \]

- **Theoretical guarantees** developed for the new minimax objective.
- Can be **kernelized**: Inner max has closed form if \(\mathcal{F} \) is an RKHS.
Empirical Results

Traffic control
(using SUMO simulator[5])

(a) \# of Trajectories (n)

(b) Different Behavior Policies

(c) Truncated Length T

Naive Average
On Policy (oracle)
WIS Trajectory-wise
WIS Step-wise
Our Method
Thank You!

Location: Room 210 & 230 AB; Poster #121
Time: Wed Dec 5th 05:00 – 07:00 PM

References & Acknowledgment

Work supported in part by NSF CRII 1830161 and Google Cloud.