Efficient Online Portfolio with Logarithmic Regret

Haipeng Luo (USC) **Chen-Yu Wei** (USC) Kai Zheng (Peking University)

 W_1

Gain:
$$\frac{W_{T+1}}{W_1} = \prod_{t=1}^T \langle x_t, r_t \rangle$$

Gain:

$$\frac{W_{T+1}}{W_1} = \prod_{t=1}^T \langle x_t, r_t \rangle$$
Benchmark:

$$\frac{W_{T+1}^*}{W_1} = \max_{u \in \Delta_N} \prod_{t=1}^T \langle u, r_t \rangle$$

Gain:

$$\frac{W_{T+1}}{W_1} = \prod_{t=1}^T \langle x_t, r_t \rangle$$
Benchmark:

$$\frac{W_{T+1}^*}{W_1} = \max_{u \in \Delta_N} \prod_{t=1}^T \langle u, r_t \rangle$$

Minimize
$$\ln\left(\frac{W_{T+1}^*}{W_{T+1}}\right) = \sum_{t=1}^T \ell_t(x_t) - \sum_{t=1}^T \ell_t(u)$$
 (Regret) $\ell_t(x) = \ln\frac{1}{\langle x, r_t \rangle}$

Gain:

$$\frac{V_{T+1}}{W_1} = \prod_{t=1}^T \langle x_t, r_t \rangle$$

Benchmark: ^V

$$\frac{V_{T+1}^*}{W_1} = \max_{u \in \Delta_N} \prod_{t=1}^T \langle u, r_t \rangle$$

Online Convex Optimization [Zinkevich'03] But with possibly unbounded gradient $\|\nabla \ell_t(x)\|_{\infty} \lesssim G \triangleq \max_{i,j} \frac{r_{t,i}}{r_{t,j}}$ Maximum Relative Ratio

Minimize
$$\ln\left(\frac{W_{T+1}^*}{W_{T+1}}\right) = \sum_{t=1}^T \ell_t(x_t) - \sum_{t=1}^T \ell_t(u)$$
 (Regret)

$$\ell_t(x) = \ln \frac{1}{\langle x, r_t \rangle}$$

• Lower bound: $\Omega(N \log T)$

N: number of stocks *T*: number of rounds

- Lower bound: $\Omega(N \log T)$
- Upper bounds:

Algorithm	Regret	Time (/round)
Universal Portfolio (Cover 1991, Kalai et al. 2002)	N log T	$T^{14}N^{4}$

- Lower bound: $\Omega(N \log T)$
- Upper bounds:

Algorithm	Regret	Time (/round)
Universal Portfolio (Cover 1991, Kalai et al. 2002)	N log T	$T^{14}N^4$

- Lower bound: $\Omega(N \log T)$
- Upper bounds:

Algorithm	Regret	Time (/round)
Universal Portfolio (Cover 1991, Kalai et al. 2002)	N log T	$T^{14}N^4$
ONS (Hazan et al. 2007)	$GN \log T$	$N^{3.5}$

- Lower bound: $\Omega(N \log T)$
- Upper bounds:

Algorithm	Regret	Time (/round)
Universal Portfolio (Cover 1991, Kalai et al. 2002)	N log T	$T^{14}N^4$
ONS (Hazan et al. 2007)	G V log T	$N^{3.5}$

- Lower bound: $\Omega(N \log T)$
- Upper bounds:

Algorithm	Regret	Time (/round)
Universal Portfolio (Cover 1991, Kalai et al. 2002)	N log T	$T^{14}N^4$
ONS (Hazan et al. 2007)	GV log T	$N^{3.5}$
Soft-Bayes (Orseau et al. 2017)	\sqrt{TN}	Ν

- Lower bound: $\Omega(N \log T)$
- Upper bounds:

Algorithm	Regret	Time (/round)
Universal Portfolio (Cover 1991, Kalai et al. 2002)	N log T	$T^{14}N^4$
ONS (Hazan et al. 2007)	GV log T	$N^{3.5}$
Soft-Bayes (Orseau et al. 2017)	TN	Ν

- Lower bound: $\Omega(N \log T)$
- Upper bounds:

Algorithm	Regret	Time (/round)
Universal Portfolio (Cover 1991, Kalai et al. 2002)	N log T	$T^{14}N^4$
ONS (Hazan et al. 2007)	GV log T	$N^{3.5}$
Soft-Bayes (Orseau et al. 2017)	TN	Ν
?	$\approx N \log T$	$\approx N$

- Lower bound: $\Omega(N \log T)$
- Upper bounds:

Algorithm	Regret	Time (/round)
Universal Portfolio (Cover 1991, Kalai et al. 2002)	N log T	$T^{14}N^4$
ONS (Hazan et al. 2007)	GV log T	$N^{3.5}$
Soft-Bayes (Orseau et al. 2017)	TN	Ν
?	$\approx N \log T$	$\approx N$
BarrONS (this work)	$N^2(\log T)^4$	$TN^{2.5}$

Main Challenge:

Main Challenge:

Barrons (Barrier-Regularized-ONS) compared to ONS:

Main Challenge:

Barrons (Barrier-Regularized-ONS) compared to ONS:

1. Additional regularizer (to avoid too extreme distribution over stocks)

Main Challenge:

Barrons (Barrier-Regularized-ONS) compared to ONS:

- 1. Additional regularizer (to avoid too extreme distribution over stocks)
- 2. Increase the learning rate for worse stocks (faster recovery)

Main Challenge:

Barrons (Barrier-Regularized-ONS) compared to ONS:

- 1. Additional regularizer (to avoid too extreme distribution over stocks)
- 2. Increase the learning rate for worse stocks (faster recovery)
- 3. Restarting (adapting to maximum relative ratio)

Main Challenge:

Barrons (Barrier-Regularized-ONS) compared to ONS:

1. Additional regularizer (to avoid too extreme distribution over stocks)

Poster #157

- 2. Increase the learning rate for worse stocks (faster recovery)
- 3. Restarting (adapting to maximum relative ratio)