Almost Optimal Algorithms for Linear Stochastic Bandits with Heavy-Tailed Payoffs

Han Shao*, Xiaotian Yu*, Irwin King and Michael R. Lyu

Department of Computer Science and Engineering
The Chinese University of Hong Kong

NeurIPS, Dec. 2018
Linear Stochastic Bandits (LSB)

Previous setting

\[x_1 = \{ \text{This is an old arm} \} \]

or \[x_1 = [0, 1, 0, \cdots, 1] \]

or \[x_1, t \in \mathbb{R}^d \]

Exploration \[\xrightarrow{} \] True Optimal

Empirically Optimal at \(t \)

\[x_{4, t} \]

Learning setting

1. At \(t \), an algorithm is given \(D_t \subseteq \mathbb{R}^d \)
2. Select an arm \(x_t \in D_t \), and observe \(y_t(x_t) = \langle x_t, \theta_* \rangle + \eta_t \)
3. \(\eta_t \) follows sub-Gaussian distributions
4. The goal is to maximize \(\sum_{t=1}^{T} \mathbb{E}[y_t(x_t)] \)
What Is A Heavy-Tailed Distribution?

Practical scenarios

- High-probability extreme returns in financial markets

- Many other real cases
 1. Delays in communication networks (Liebeherr 2012)
 2. Analysis of biological data (Burnecki 2015)
 3. ...
LSB with Heavy-Tailed Payoffs

Problem definition

- Multi-armed bandits with heavy-tailed payoffs (Bubeck, 2013)
 \[\mathbb{E}[\eta_t^{1+\epsilon}] < +\infty, \]
 (1)

where \(\epsilon \in (0, 1] \)

- Our setting: LSB with \(\eta_t \) satisfying Eq. (1)
 - Weaker assumption
 - Medina and Yang (2016) cannot recover the sub-Gaussian case when \(\epsilon = 1 \)
Algorithm: **Median of means under OFU (MENU)**
Framework comparison with MoM by Medina and Yang (2016)

(a) Framework of MENU

(b) Framework of MoM
Experimental Results

Figure 1: Comparison of cumulative payoffs for a synthetic dataset.
Table 1: Comparison of four algorithms.

<table>
<thead>
<tr>
<th>algorithm</th>
<th>MoM</th>
<th>MENU</th>
<th>CRT</th>
<th>TOFU</th>
</tr>
</thead>
<tbody>
<tr>
<td>regret</td>
<td>$\tilde{O}(T^{\frac{1+2\epsilon}{1+3\epsilon}})$</td>
<td>$\tilde{O}(T^{\frac{1}{1+\epsilon}})$</td>
<td>$\tilde{O}(T^{\frac{1}{2}+\frac{1}{2(1+\epsilon)}})$</td>
<td>$\tilde{O}(T^{\frac{1}{1+\epsilon}})$</td>
</tr>
</tbody>
</table>

Lower bound: $\Omega(T^{\frac{1}{1+\epsilon}})$

Poster: Dec. 5th, 10:45 AM – 12:45 PM
© Room 210 & 230 AB #158