Size-Noise Tradeoffs in Generative Networks

Bolton Bailey Matus Telgarsky

Univ. of Illinois Urbana-Champaign

November 29, 2018
Generative networks

Easy distribution $X \in \mathbb{R}^n$.
Hard distribution $Y \in \mathbb{R}^d$.
Generator Network $g : X \rightarrow Y$.

What can Y be?

Previous Work

▶ Universal approximation theorem:
 Shallow networks approximate continuous functions.
▶ “On the ability of neural nets to express distributions”:
 Upper bounds for representability & shallow depth separation.

Our Contribution: Wasserstein Error Bounds

▶ $(n < d)$ Tight error bounds $\approx (\text{Width})^{\text{Depth}}$ $\square \rightarrow \square$
 This is a deep lower bound.
▶ $(n = d)$ Switching distributions $\approx \text{polylog}(1/\text{Error})$. $\square \rightarrow \bullet$
▶ $(n > d)$ Trivial networks approximate normal by addition.
Increasing Uniform Noise \((n < d = kn)\)

Networks going from Uniform \([0, 1]^n\) to \([0, 1]^{kn}\):

Optimal Error \(\approx (\text{Width})^{-\left(\frac{\text{Depth}}{k-1}\right)}\).

Upper Bound Proof: Space filling curve.
Lower Bound Proof: Affine piece counting.
Normal \leftrightarrow Uniform ($n = d = 1$)

Normal \rightarrow Uniform: Upper Bound
Approximate the normal CDF with Taylor series.

$$\quad + \quad + \quad \approx \quad \rightarrow$$

Size $= \text{polylog}(1/\text{Error})$.

Uniform \rightarrow Normal: Upper Bound
Approximate the inverse CDF using binary search.

Size $= \text{polylog}(1/\text{Error})$.

Lower bounds
Size $> \log(1/\text{Error})$ with more affine piece counting.
High Dimensional Uniform to Normal \((n > d)\)

Summing independent uniform distributions approximates a normal.

With a version of Berry-Esseen, we have:

\[
\text{Error} \approx \frac{1}{\sqrt{\text{Number of inputs}}}.
\]