Timezone: »
In many real-world scenarios it is crucial to be able to reliably and efficiently reason under uncertainty while capturing complex relationships in data. Probabilistic circuits (PCs), a prominent family of tractable probabilistic models, offer a remedy to this challenge by composing simple, tractable distributions into a high-dimensional probability distribution. However, learning PCs on heterogeneous data is challenging and densities of some parametric distributions are not available in closed form, limiting their potential use. We introduce characteristic circuits (CCs), a family of tractable probabilistic models providing a unified formalization of distributions over heterogeneous data in the spectral domain. The one-to-one relationship between characteristic functions and probability measures enables us to learn high-dimensional distributions on heterogeneous data domains and facilitates efficient probabilistic inference even when no closed-form density function is available. We show that the structure and parameters of CCs can be learned efficiently from the data and find that CCs outperform state-of-the-art density estimators for heterogeneous data domains on common benchmark data sets.
Author Information
Zhongjie Yu (TU Darmstadt)
Martin Trapp (Aalto University)
Kristian Kersting (TU Darmstadt)
Related Events (a corresponding poster, oral, or spotlight)
-
2023 Poster: Characteristic Circuits »
Tue. Dec 12th 04:45 -- 06:45 PM Room Great Hall & Hall B1+B2 #1219
More from the Same Authors
-
2022 : Mixture of Gaussian Processes with Probabilistic Circuits for Multi-Output Regression »
Mingye Zhu · Zhongjie Yu · Martin Trapp · Arseny Skryagin · Kristian Kersting -
2023 : Data-Conditional Diffusion Bridges »
Ella Tamir · Martin Trapp · Arno Solin -
2023 : LEDITS++: Limitless Image Editing using Text-to-Image Models »
Manuel Brack · Linoy Tsban · Katharina Kornmeier · Apolinário Passos · Felix Friedrich · Patrick Schramowski · Kristian Kersting -
2023 : LEDITS++: Limitless Image Editing using Text-to-Image Models »
Manuel Brack · Linoy Tsban · Katharina Kornmeier · Apolinário Passos · Felix Friedrich · Patrick Schramowski · Kristian Kersting -
2023 : Leveraging Diffusion-Based Image Variations for Robust Training on Poisoned Data »
Lukas Struppek · Martin Bernhard Hentschel · Clifton Poth · Dominik Hintersdorf · Kristian Kersting -
2023 : Defending Our Privacy With Backdoors »
Dominik Hintersdorf · Lukas Struppek · Daniel Neider · Kristian Kersting -
2023 Poster: Do Not Marginalize Mechanisms, Rather Consolidate! »
Moritz Willig · Matej Zečević · Devendra Dhami · Kristian Kersting -
2023 Poster: Interpretable and Explainable Logical Policies via Neurally Guided Symbolic Abstraction »
Quentin Delfosse · Hikaru Shindo · Devendra Dhami · Kristian Kersting -
2023 Poster: ATMAN: Understanding Transformer Predictions Through Memory Efficient Attention Manipulation »
Björn Deiseroth · Mayukh Deb · Samuel Weinbach · Manuel Brack · Patrick Schramowski · Kristian Kersting -
2023 Poster: SEGA: Instructing Text-to-Image Models using Semantic Guidance »
Manuel Brack · Felix Friedrich · Dominik Hintersdorf · Lukas Struppek · Patrick Schramowski · Kristian Kersting -
2023 Poster: MultiFusion: Fusing Pre-Trained Models for Multi-Lingual, Multi-Modal Image Generation »
Marco Bellagente · Manuel Brack · Hannah Teufel · Felix Friedrich · Björn Deiseroth · Constantin Eichenberg · Andrew Dai · Robert Baldock · Souradeep Nanda · Koen Oostermeijer · Andres Felipe Cruz-Salinas · Patrick Schramowski · Kristian Kersting · Samuel Weinbach -
2023 : Transport with Support: Data-Conditional Diffusion Bridges »
Ella Tamir · Martin Trapp · Arno Solin -
2022 : Panel »
Guy Van den Broeck · Cassio de Campos · Denis Maua · Kristian Kersting · Rianne van den Berg -
2021 Poster: Periodic Activation Functions Induce Stationarity »
Lassi Meronen · Martin Trapp · Arno Solin -
2021 Poster: Interventional Sum-Product Networks: Causal Inference with Tractable Probabilistic Models »
Matej Zečević · Devendra Dhami · Athresh Karanam · Sriraam Natarajan · Kristian Kersting