Timezone: »
To achieve the highest perceptual quality, state-of-the-art diffusion models are optimized with objectives that typically look very different from the maximum likelihood and the Evidence Lower Bound (ELBO) objectives. In this work, we reveal that diffusion model objectives are actually closely related to the ELBO.Specifically, we show that all commonly used diffusion model objectives equate to a weighted integral of ELBOs over different noise levels, where the weighting depends on the specific objective used. Under the condition of monotonic weighting, the connection is even closer: the diffusion objective then equals the ELBO, combined with simple data augmentation, namely Gaussian noise perturbation. We show that this condition holds for a number of state-of-the-art diffusion models. In experiments, we explore new monotonic weightings and demonstrate their effectiveness, achieving state-of-the-art FID scores on the high-resolution ImageNet benchmark.
Author Information
Diederik Kingma (Google)

I do research on scalable methods for machine learning, with a focus on generative models. My contributions include the Variational Autoencoder (VAE), the Adam optimizer, Glow, and Variational Diffusion Models, but please see Scholar for a more complete list. I obtained a PhD (cum laude) from University of Amsterdam in 2017, and was part of the founding team of OpenAI in 2015. Currently I work at Google DeepMind.
Ruiqi Gao (Google DeepMind)
Related Events (a corresponding poster, oral, or spotlight)
-
2023 Poster: Understanding Diffusion Objectives as the ELBO with Simple Data Augmentation »
Wed. Dec 13th 04:45 -- 06:45 PM Room Great Hall & Hall B1+B2 #531
More from the Same Authors
-
2022 : Conformal Isometry of Lie Group Representation in Recurrent Network of Grid Cells »
Dehong Xu · Ruiqi Gao · Wenhao Zhang · Xue-Xin Wei · Ying Nian Wu -
2022 : On Distillation of Guided Diffusion Models »
Chenlin Meng · Ruiqi Gao · Diederik Kingma · Stefano Ermon · Jonathan Ho · Tim Salimans -
2023 Poster: Learning Energy-Based Prior Model with Diffusion-Amortized MCMC »
Peiyu Yu · Yaxuan Zhu · Sirui Xie · Xiaojian (Shawn) Ma · Ruiqi Gao · Song-Chun Zhu · Ying Nian Wu -
2021 Poster: On Path Integration of Grid Cells: Group Representation and Isotropic Scaling »
Ruiqi Gao · Jianwen Xie · Xue-Xin Wei · Song-Chun Zhu · Ying Nian Wu -
2021 Poster: Variational Diffusion Models »
Diederik Kingma · Tim Salimans · Ben Poole · Jonathan Ho -
2020 Poster: ICE-BeeM: Identifiable Conditional Energy-Based Deep Models Based on Nonlinear ICA »
Ilyes Khemakhem · Ricardo Monti · Diederik Kingma · Aapo Hyvarinen -
2020 Spotlight: ICE-BeeM: Identifiable Conditional Energy-Based Deep Models Based on Nonlinear ICA »
Ilyes Khemakhem · Ricardo Monti · Diederik Kingma · Aapo Hyvarinen -
2020 Poster: Sanity-Checking Pruning Methods: Random Tickets can Win the Jackpot »
Jingtong Su · Yihang Chen · Tianle Cai · Tianhao Wu · Ruiqi Gao · Liwei Wang · Jason Lee -
2019 : Poster session »
Sebastian Farquhar · Erik Daxberger · Andreas Look · Matt Benatan · Ruiyi Zhang · Marton Havasi · Fredrik Gustafsson · James A Brofos · Nabeel Seedat · Micha Livne · Ivan Ustyuzhaninov · Adam Cobb · Felix D McGregor · Patrick McClure · Tim R. Davidson · Gaurush Hiranandani · Sanjeev Arora · Masha Itkina · Didrik Nielsen · William Harvey · Matias Valdenegro-Toro · Stefano Peluchetti · Riccardo Moriconi · Tianyu Cui · Vaclav Smidl · Taylan Cemgil · Jack Fitzsimons · He Zhao · · mariana vargas vieyra · Apratim Bhattacharyya · Rahul Sharma · Geoffroy Dubourg-Felonneau · Jonathan Warrell · Slava Voloshynovskiy · Mihaela Rosca · Jiaming Song · Andrew Ross · Homa Fashandi · Ruiqi Gao · Hooshmand Shokri Razaghi · Joshua Chang · Tim Xiao · Vanessa Boehm · Giorgio Giannone · Ranganath Krishnan · Joe Davison · Arsenii Ashukha · Jeremiah Liu · Sicong (Sheldon) Huang · Evgenii Nikishin · Sunho Park · Nilesh Ahuja · Mahesh Subedar · · Artyom Gadetsky · Jhosimar Arias Figueroa · Tim G. J. Rudner · Waseem Aslam · Adrián Csiszárik · John Moberg · Ali Hebbal · Kathrin Grosse · Pekka Marttinen · Bang An · Hlynur Jónsson · Samuel Kessler · Abhishek Kumar · Mikhail Figurnov · Omesh Tickoo · Steindor Saemundsson · Ari Heljakka · Dániel Varga · Niklas Heim · Simone Rossi · Max Laves · Waseem Gharbieh · Nicholas Roberts · Luis Armando Pérez Rey · Matthew Willetts · Prithvijit Chakrabarty · Sumedh Ghaisas · Carl Shneider · Wray Buntine · Kamil Adamczewski · Xavier Gitiaux · Suwen Lin · Hao Fu · Gunnar Rätsch · Aidan Gomez · Erik Bodin · Dinh Phung · Lennart Svensson · Juliano Tusi Amaral Laganá Pinto · Milad Alizadeh · Jianzhun Du · Kevin Murphy · Beatrix Benkő · Shashaank Vattikuti · Jonathan Gordon · Christopher Kanan · Sontje Ihler · Darin Graham · Michael Teng · Louis Kirsch · Tomas Pevny · Taras Holotyak -
2019 Poster: Convergence of Adversarial Training in Overparametrized Neural Networks »
Ruiqi Gao · Tianle Cai · Haochuan Li · Cho-Jui Hsieh · Liwei Wang · Jason Lee -
2019 Spotlight: Convergence of Adversarial Training in Overparametrized Neural Networks »
Ruiqi Gao · Tianle Cai · Haochuan Li · Cho-Jui Hsieh · Liwei Wang · Jason Lee -
2018 Poster: Glow: Generative Flow with Invertible 1x1 Convolutions »
Diederik Kingma · Prafulla Dhariwal -
2017 Workshop: Bayesian Deep Learning »
Yarin Gal · José Miguel Hernández-Lobato · Christos Louizos · Andrew Wilson · Andrew Wilson · Diederik Kingma · Zoubin Ghahramani · Kevin Murphy · Max Welling -
2016 Poster: Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks »
Tim Salimans · Diederik Kingma -
2016 Oral: Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks »
Tim Salimans · Diederik Kingma -
2016 Poster: Improving Variational Autoencoders with Inverse Autoregressive Flow »
Diederik Kingma · Tim Salimans · Rafal Jozefowicz · Peter Chen · Xi Chen · Ilya Sutskever · Max Welling -
2015 : Variational Auto-Encoders and Extensions »
Diederik Kingma -
2015 Poster: Variational Dropout and the Local Reparameterization Trick »
Diederik Kingma · Tim Salimans · Max Welling -
2014 Poster: Semi-supervised Learning with Deep Generative Models »
Diederik Kingma · Shakir Mohamed · Danilo Jimenez Rezende · Max Welling -
2014 Spotlight: Semi-supervised Learning with Deep Generative Models »
Diederik Kingma · Shakir Mohamed · Danilo Jimenez Rezende · Max Welling -
2010 Poster: Regularized estimation of image statistics by Score Matching »
Diederik Kingma · Yann LeCun