Timezone: »
Recently, Meta-Black-Box Optimization with Reinforcement Learning (MetaBBO-RL) has showcased the power of leveraging RL at the meta-level to mitigate manual fine-tuning of low-level black-box optimizers. However, this field is hindered by the lack of a unified benchmark. To fill this gap, we introduce MetaBox, the first benchmark platform expressly tailored for developing and evaluating MetaBBO-RL methods. MetaBox offers a flexible algorithmic template that allows users to effortlessly implement their unique designs within the platform. Moreover, it provides a broad spectrum of over 300 problem instances, collected from synthetic to realistic scenarios, and an extensive library of 19 baseline methods, including both traditional black-box optimizers and recent MetaBBO-RL methods. Besides, MetaBox introduces three standardized performance metrics, enabling a more thorough assessment of the methods. In a bid to illustrate the utility of MetaBox for facilitating rigorous evaluation and in-depth analysis, we carry out a wide-ranging benchmarking study on existing MetaBBO-RL methods. Our MetaBox is open-source and accessible at: https://github.com/GMC-DRL/MetaBox.
Author Information
Zeyuan Ma (South China University of Technology)
Hongshu Guo (South China University of Technology)
Jiacheng Chen (South China University of Technology)
Zhenrui Li (South China University of Technology)
Guojun Peng (South China University of Technology)
Yue-Jiao Gong
Yining Ma (National University of Singapore)
Zhiguang Cao (Singapore Management University)
Related Events (a corresponding poster, oral, or spotlight)
-
2023 Poster: MetaBox: A Benchmark Platform for Meta-Black-Box Optimization with Reinforcement Learning »
Thu. Dec 14th through Fri the 15th Room Great Hall & Hall B1+B2 #1304
More from the Same Authors
-
2021 Spotlight: Learning Large Neighborhood Search Policy for Integer Programming »
Yaoxin Wu · Wen Song · Zhiguang Cao · Jie Zhang -
2022 Poster: Learning Generalizable Models for Vehicle Routing Problems via Knowledge Distillation »
Jieyi Bi · Yining Ma · Jiahai Wang · Zhiguang Cao · Jinbiao Chen · Yuan Sun · Yeow Meng Chee -
2023 Poster: DeepACO: Neural-enhanced Ant Systems for Combinatorial Optimization »
Haoran Ye · Jiarui Wang · Zhiguang Cao · Helan Liang · Yong Li -
2023 Poster: Neural Multi-Objective Combinatorial Optimization with Diversity Enhancement »
Jinbiao Chen · Zizhen Zhang · Zhiguang Cao · Yaoxin Wu · Yining Ma · Te Ye · Jiahai Wang -
2023 Poster: Ensemble-based Deep Reinforcement Learning for Vehicle Routing Problems under Distribution Shift »
YUAN JIANG · Zhiguang Cao · Yaoxin Wu · Wen Song · Jie Zhang -
2023 Poster: Efficient Meta Neural Heuristic for Multi-Objective Combinatorial Optimization »
Jinbiao Chen · Jiahai Wang · Zizhen Zhang · Zhiguang Cao · Te Ye · Siyuan Chen -
2023 Poster: Learning to Search Feasible and Infeasible Regions of Routing Problems with Flexible Neural k-Opt »
Yining Ma · Zhiguang Cao · Yeow Meng Chee -
2022 Spotlight: Lightning Talks 5B-3 »
Yanze Wu · Jie Xiao · Nianzu Yang · Jieyi Bi · Jian Yao · Yiting Chen · Qizhou Wang · Yangru Huang · Yongqiang Chen · Peixi Peng · Yuxin Hong · Xintao Wang · Feng Liu · Yining Ma · Qibing Ren · Xueyang Fu · Yonggang Zhang · Kaipeng Zeng · Jiahai Wang · GEN LI · Yonggang Zhang · Qitian Wu · Yifan Zhao · Chiyu Wang · Junchi Yan · Feng Wu · Yatao Bian · Xiaosong Jia · Ying Shan · Zhiguang Cao · Zheng-Jun Zha · Guangyao Chen · Tianjun Xiao · Han Yang · Jing Zhang · Jinbiao Chen · MA Kaili · Yonghong Tian · Junchi Yan · Chen Gong · Tong He · Binghui Xie · Yuan Sun · Francesco Locatello · Tongliang Liu · Yeow Meng Chee · David P Wipf · Tongliang Liu · Bo Han · Bo Han · Yanwei Fu · James Cheng · Zheng Zhang -
2022 Spotlight: Learning Generalizable Models for Vehicle Routing Problems via Knowledge Distillation »
Jieyi Bi · Yining Ma · Jiahai Wang · Zhiguang Cao · Jinbiao Chen · Yuan Sun · Yeow Meng Chee -
2022 Poster: Graph Learning Assisted Multi-Objective Integer Programming »
Yaoxin Wu · Wen Song · Zhiguang Cao · Jie Zhang · Abhishek Gupta · Mingyan Lin -
2021 Poster: NeuroLKH: Combining Deep Learning Model with Lin-Kernighan-Helsgaun Heuristic for Solving the Traveling Salesman Problem »
Liang Xin · Wen Song · Zhiguang Cao · Jie Zhang -
2021 Poster: Fault-Tolerant Federated Reinforcement Learning with Theoretical Guarantee »
Xiaofeng Fan · Yining Ma · Zhongxiang Dai · Wei Jing · Cheston Tan · Bryan Kian Hsiang Low -
2021 Poster: Learning to Iteratively Solve Routing Problems with Dual-Aspect Collaborative Transformer »
Yining Ma · Jingwen Li · Zhiguang Cao · Wen Song · Le Zhang · Zhenghua Chen · Jing Tang -
2021 Poster: Learning Large Neighborhood Search Policy for Integer Programming »
Yaoxin Wu · Wen Song · Zhiguang Cao · Jie Zhang