Timezone: »
Sampling in discrete spaces, with critical applications in simulation and optimization, has recently been boosted by significant advances in gradient-based approaches that exploit modern accelerators like GPUs. However, two key challenges are hindering further advancement in research on discrete sampling. First, since there is no consensus on experimental settings and evaluation setups, the empirical results in different research papers are often not comparable. Second, implementing samplers and target distributions often requires a nontrivial amount of effort in terms of calibration and parallelism. To tackle these challenges, we propose DISCS (DISCrete Sampling), a tailored package and benchmark that supports unified and efficient experiment implementation and evaluations for discrete sampling in three types of tasks: sampling from classical graphical models and energy based generative models, and sampling for solving combinatorial optimization. Throughout the comprehensive evaluations in DISCS, we gained new insights into scalability, design principles for proposal distributions, and lessons for adaptive sampling design. DISCS efficiently implements representative discrete samplers in existing research works as baselines and offers a simple interface that researchers can conveniently add new discrete samplers and directly compare their performance with the benchmark result in a calibrated setup.
Author Information
Katayoon Goshvadi (Google Deepmind)
Haoran Sun (Two Sigma)
Xingchao Liu (University of Texas, Austin)
Azade Nova (Google Brain)
Ruqi Zhang (Purdue University)
Will Grathwohl (Deepmind)
Dale Schuurmans (Google Brain & University of Alberta)
Hanjun Dai (Google DeepMind)
More from the Same Authors
-
2020 : Session B, Poster 20: A Framework For Differentiable Discovery Of Graph Algorithms »
Hanjun Dai -
2020 : Session B, Poster 18: Improving Learning To Branch Via Reinforcement Learning »
Haoran Sun -
2021 Spotlight: Combiner: Full Attention Transformer with Sparse Computation Cost »
Hongyu Ren · Hanjun Dai · Zihang Dai · Sherry Yang · Jure Leskovec · Dale Schuurmans · Bo Dai -
2021 : Offline Policy Selection under Uncertainty »
Sherry Yang · Bo Dai · Ofir Nachum · George Tucker · Dale Schuurmans -
2022 : Annealed Training for Combinatorial Optimization on Graphs »
Haoran Sun · Etash Guha · Hanjun Dai -
2022 : Diffusion-based Molecule Generation with Informative Prior Bridges »
Chengyue Gong · Lemeng Wu · Xingchao Liu · Mao Ye · Qiang Liu -
2022 : Teaching Algorithmic Reasoning via In-context Learning »
Hattie Zhou · Azade Nova · aaron courville · Hugo Larochelle · Behnam Neyshabur · Hanie Sedghi -
2022 : Neural Volumetric Mesh Generator »
Yan Zheng · Lemeng Wu · Xingchao Liu · Zhen Chen · Qiang Liu · Qixing Huang -
2022 : Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow »
Xingchao Liu · Chengyue Gong · Qiang Liu -
2022 : Let us Build Bridges: Understanding and Extending Diffusion Generative Models »
Xingchao Liu · Lemeng Wu · Mao Ye · Qiang Liu -
2022 : On Equivalences between Weight and Function-Space Langevin Dynamics »
Ziyu Wang · Yuhao Zhou · Ruqi Zhang · Jun Zhu -
2023 : Microenvironment Flows as Protein Engineers »
Chengyue Gong · Lemeng Wu · Daniel Diaz · Xingchao Liu · James Loy · Adam Klivans · Qiang Liu -
2023 : Scalable Diffusion for Materials Generation »
Sherry Yang · KwangHwan Cho · Amil Merchant · Pieter Abbeel · Dale Schuurmans · Igor Mordatch · Ekin Dogus Cubuk -
2023 : Learning Interactive Real-World Simulators »
Sherry Yang · Yilun Du · Kamyar Ghasemipour · Jonathan Tompson · Dale Schuurmans · Pieter Abbeel -
2023 : Learning Interactive Real-World Simulators »
Sherry Yang · Yilun Du · Kamyar Ghasemipour · Jonathan Tompson · Dale Schuurmans · Pieter Abbeel -
2023 : Training Bayesian Neural Networks with Sparse Subspace Variational Inference »
Junbo Li · Zichen Miao · Qiang Qiu · Ruqi Zhang -
2023 : Posterior Sampling on Simsiam: Rethinking Optimization in Siamese Self-Supervised Learning »
Daniel De Mello · Ruqi Zhang · Bruno Ribeiro -
2023 : GAD-EBM: Graph Anomaly Detection using Energy-Based Models »
Amit Roy · Juan Shu · Olivier Elshocht · Jeroen Smeets · Ruqi Zhang · Pan Li -
2023 : RF-POLICY: Rectified Flows are Computation-Adaptive Decision Makers »
Xixi Hu · Bo Liu · Xingchao Liu · Qiang Liu -
2023 : RF-POLICY: Rectified Flows are Computation-Adaptive Decision Makers »
Xixi Hu · Bo Liu · Xingchao Liu · Qiang Liu -
2023 : Enhancing Low-Precision Sampling via Stochastic Gradient Hamiltonian Monte Carlo »
Ziyi Wang · Yujie Chen · Ruqi Zhang · Qifan Song -
2023 : Low-precision Sampling for Probabilistic Deep Learning »
Ruqi Zhang -
2023 : Scalable Diffusion for Materials Generation »
Sherry Yang · KwangHwan Cho · Amil Merchant · Pieter Abbeel · Dale Schuurmans · Igor Mordatch · Ekin Dogus Cubuk -
2023 Workshop: New Frontiers in Graph Learning (GLFrontiers) »
Jiaxuan You · Rex Ying · Hanjun Dai · Ge Liu · Azalia Mirhoseini · Smita Krishnaswamy -
2023 Workshop: Foundation Models for Decision Making »
Sherry Yang · Ofir Nachum · Yilun Du · Stephen McAleer · Igor Mordatch · Linxi Fan · Jeannette Bohg · Dale Schuurmans -
2023 Poster: Let the Flows Tell: Solving Graph Combinatorial Problems with GFlowNets »
Dinghuai Zhang · Hanjun Dai · Nikolay Malkin · Aaron Courville · Yoshua Bengio · Ling Pan -
2023 Poster: Managing Temporal Resolution in Continuous Value Estimation: A Fundamental Trade-off »
Zichen Zhang · Johannes Kirschner · Junxi Zhang · Francesco Zanini · Alex Ayoub · Masood Dehghan · Dale Schuurmans -
2023 Poster: LambdaBeam: Neural Program Search with Higher-Order Functions and Lambdas »
Kensen Shi · Hanjun Dai · Wen-Ding Li · Kevin Ellis · Charles Sutton -
2023 Poster: Video Timeline Modeling For News Story Understanding »
Meng Liu · Mingda Zhang · Jialu Liu · Hanjun Dai · Ming-Hsuan Yang · Shuiwang Ji · Zheyun Feng · Boqing Gong -
2023 Poster: Learning Universal Policies via Text-Guided Video Generation »
Yilun Du · Sherry Yang · Bo Dai · Hanjun Dai · Ofir Nachum · Josh Tenenbaum · Dale Schuurmans · Pieter Abbeel -
2023 Poster: Ordering-based Conditions for Global Convergence of Policy Gradient Methods »
Jincheng Mei · Bo Dai · Alekh Agarwal · Mohammad Ghavamzadeh · Csaba Szepesvari · Dale Schuurmans -
2023 Oral: Ordering-based Conditions for Global Convergence of Policy Gradient Methods »
Jincheng Mei · Bo Dai · Alekh Agarwal · Mohammad Ghavamzadeh · Csaba Szepesvari · Dale Schuurmans -
2022 : Teaching Algorithmic Reasoning via In-context Learning »
Hattie Zhou · Azade Nova · aaron courville · Hugo Larochelle · Behnam Neyshabur · Hanie Sedghi -
2022 : Poster Session 1 »
Andrew Lowy · Thomas Bonnier · Yiling Xie · Guy Kornowski · Simon Schug · Seungyub Han · Nicolas Loizou · xinwei zhang · Laurent Condat · Tabea E. Röber · Si Yi Meng · Marco Mondelli · Runlong Zhou · Eshaan Nichani · Adrian Goldwaser · Rudrajit Das · Kayhan Behdin · Atish Agarwala · Mukul Gagrani · Gary Cheng · Tian Li · Haoran Sun · Hossein Taheri · Allen Liu · Siqi Zhang · Dmitrii Avdiukhin · Bradley Brown · Miaolan Xie · Junhyung Lyle Kim · Sharan Vaswani · Xinmeng Huang · Ganesh Ramachandra Kini · Angela Yuan · Weiqiang Zheng · Jiajin Li -
2022 Workshop: Machine Learning for Systems »
Neel Kant · Martin Maas · Azade Nova · Benoit Steiner · Xinlei XU · Dan Zhang -
2022 Workshop: New Frontiers in Graph Learning »
Jiaxuan You · Marinka Zitnik · Rex Ying · Yizhou Sun · Hanjun Dai · Stefanie Jegelka -
2022 Poster: A Simple Decentralized Cross-Entropy Method »
Zichen Zhang · Jun Jin · Martin Jagersand · Jun Luo · Dale Schuurmans -
2022 Poster: Chain of Thought Imitation with Procedure Cloning »
Sherry Yang · Dale Schuurmans · Pieter Abbeel · Ofir Nachum -
2022 Poster: Optimal Scaling for Locally Balanced Proposals in Discrete Spaces »
Haoran Sun · Hanjun Dai · Dale Schuurmans -
2022 Poster: Score-Based Diffusion meets Annealed Importance Sampling »
Arnaud Doucet · Will Grathwohl · Alexander Matthews · Heiko Strathmann -
2022 Poster: The Role of Baselines in Policy Gradient Optimization »
Jincheng Mei · Wesley Chung · Valentin Thomas · Bo Dai · Csaba Szepesvari · Dale Schuurmans -
2022 Poster: Does GNN Pretraining Help Molecular Representation? »
Ruoxi Sun · Hanjun Dai · Adams Wei Yu -
2022 Poster: Sampling in Constrained Domains with Orthogonal-Space Variational Gradient Descent »
Ruqi Zhang · Qiang Liu · Xin Tong -
2022 Poster: Learning to Navigate Wikipedia by Taking Random Walks »
Manzil Zaheer · Kenneth Marino · Will Grathwohl · John Schultz · Wendy Shang · Sheila Babayan · Arun Ahuja · Ishita Dasgupta · Christine Kaeser-Chen · Rob Fergus -
2022 Poster: Chain-of-Thought Prompting Elicits Reasoning in Large Language Models »
Jason Wei · Xuezhi Wang · Dale Schuurmans · Maarten Bosma · brian ichter · Fei Xia · Ed Chi · Quoc V Le · Denny Zhou -
2022 Poster: Diffusion-based Molecule Generation with Informative Prior Bridges »
Lemeng Wu · Chengyue Gong · Xingchao Liu · Mao Ye · Qiang Liu -
2022 Poster: On the Global Convergence Rates of Decentralized Softmax Gradient Play in Markov Potential Games »
Runyu Zhang · Jincheng Mei · Bo Dai · Dale Schuurmans · Na Li -
2021 : Closing Remarks »
Jonathan Raiman · Mimee Xu · Martin Maas · Anna Goldie · Azade Nova · Benoit Steiner -
2021 : Dale Schuurmans Talk Q&A »
Dale Schuurmans -
2021 : Invited Talk: Dale Schuurmans - Understanding Deep Value Estimation »
Dale Schuurmans -
2021 : Opening Remarks »
Jonathan Raiman · Anna Goldie · Benoit Steiner · Azade Nova · Martin Maas · Mimee Xu -
2021 Workshop: ML For Systems »
Benoit Steiner · Jonathan Raiman · Martin Maas · Azade Nova · Mimee Xu · Anna Goldie -
2021 Poster: Combiner: Full Attention Transformer with Sparse Computation Cost »
Hongyu Ren · Hanjun Dai · Zihang Dai · Sherry Yang · Jure Leskovec · Dale Schuurmans · Bo Dai -
2021 Poster: Multi-task Learning of Order-Consistent Causal Graphs »
Xinshi Chen · Haoran Sun · Caleb Ellington · Eric Xing · Le Song -
2021 Poster: Understanding the Effect of Stochasticity in Policy Optimization »
Jincheng Mei · Bo Dai · Chenjun Xiao · Csaba Szepesvari · Dale Schuurmans -
2020 : Poster Session B »
Ravichandra Addanki · Andreea-Ioana Deac · Yujia Xie · Francesco Landolfi · Antoine Prouvost · Claudius Gros · Renzo Massobrio · Abhishek Cauligi · Simon Alford · Hanjun Dai · Alberto Franzin · Nitish Kumar Panigrahy · Brandon Kates · Iddo Drori · Taoan Huang · Zhou Zhou · Marin Vlastelica · Anselm Paulus · Aaron Zweig · Minsu Cho · Haiyan Yin · Michal Lisicki · Nan Jiang · Haoran Sun -
2020 : Contributed Talk: A Framework For Differentiable Discovery Of Graph Algorithms »
Hanjun Dai -
2020 Poster: Asymptotically Optimal Exact Minibatch Metropolis-Hastings »
Ruqi Zhang · A. Feder Cooper · Christopher De Sa -
2020 Spotlight: Asymptotically Optimal Exact Minibatch Metropolis-Hastings »
Ruqi Zhang · A. Feder Cooper · Christopher De Sa -
2020 Poster: Differentiable Top-k with Optimal Transport »
Yujia Xie · Hanjun Dai · Minshuo Chen · Bo Dai · Tuo Zhao · Hongyuan Zha · Wei Wei · Tomas Pfister -
2020 Poster: Learning Discrete Energy-based Models via Auxiliary-variable Local Exploration »
Hanjun Dai · Rishabh Singh · Bo Dai · Charles Sutton · Dale Schuurmans -
2019 Poster: Maximum Entropy Monte-Carlo Planning »
Chenjun Xiao · Ruitong Huang · Jincheng Mei · Dale Schuurmans · Martin Müller -
2019 Poster: Surrogate Objectives for Batch Policy Optimization in One-step Decision Making »
Minmin Chen · Ramki Gummadi · Chris Harris · Dale Schuurmans -
2019 Poster: Poisson-Minibatching for Gibbs Sampling with Convergence Rate Guarantees »
Ruqi Zhang · Christopher De Sa -
2019 Poster: Invertible Convolutional Flow »
Mahdi Karami · Dale Schuurmans · Jascha Sohl-Dickstein · Laurent Dinh · Daniel Duckworth -
2019 Spotlight: Poisson-Minibatching for Gibbs Sampling with Convergence Rate Guarantees »
Ruqi Zhang · Christopher De Sa -
2019 Spotlight: Invertible Convolutional Flow »
Mahdi Karami · Dale Schuurmans · Jascha Sohl-Dickstein · Laurent Dinh · Daniel Duckworth -
2018 : Off-policy Policy Optimization (Dale Schuurmans) »
Dale Schuurmans -
2017 Poster: Bridging the Gap Between Value and Policy Based Reinforcement Learning »
Ofir Nachum · Mohammad Norouzi · Kelvin Xu · Dale Schuurmans -
2017 Poster: Multi-view Matrix Factorization for Linear Dynamical System Estimation »
Mahdi Karami · Martha White · Dale Schuurmans · Csaba Szepesvari -
2016 Poster: Deep Learning Games »
Dale Schuurmans · Martin A Zinkevich -
2016 Poster: Reward Augmented Maximum Likelihood for Neural Structured Prediction »
Mohammad Norouzi · Samy Bengio · zhifeng Chen · Navdeep Jaitly · Mike Schuster · Yonghui Wu · Dale Schuurmans -
2015 Poster: Embedding Inference for Structured Multilabel Prediction »
Farzaneh Mirzazadeh · Siamak Ravanbakhsh · Nan Ding · Dale Schuurmans -
2014 Workshop: Representation and Learning Methods for Complex Outputs »
Richard Zemel · Dale Schuurmans · Kilian Q Weinberger · Yuhong Guo · Jia Deng · Francesco Dinuzzo · Hal Daumé III · Honglak Lee · Noah A Smith · Richard Sutton · Jiaqian YU · Vitaly Kuznetsov · Luke Vilnis · Hanchen Xiong · Calvin Murdock · Thomas Unterthiner · Jean-Francis Roy · Martin Renqiang Min · Hichem SAHBI · Fabio Massimo Zanzotto -
2014 Poster: Convex Deep Learning via Normalized Kernels »
Özlem Aslan · Xinhua Zhang · Dale Schuurmans -
2013 Workshop: Output Representation Learning »
Yuhong Guo · Dale Schuurmans · Richard Zemel · Samy Bengio · Yoshua Bengio · Li Deng · Dan Roth · Kilian Q Weinberger · Jason Weston · Kihyuk Sohn · Florent Perronnin · Gabriel Synnaeve · Pablo R Strasser · julien audiffren · Carlo Ciliberto · Dan Goldwasser -
2013 Poster: Convex Two-Layer Modeling »
Özlem Aslan · Hao Cheng · Xinhua Zhang · Dale Schuurmans -
2013 Spotlight: Convex Two-Layer Modeling »
Özlem Aslan · Hao Cheng · Xinhua Zhang · Dale Schuurmans -
2013 Poster: Polar Operators for Structured Sparse Estimation »
Xinhua Zhang · Yao-Liang Yu · Dale Schuurmans -
2012 Poster: Convex Multi-view Subspace Learning »
Martha White · Yao-Liang Yu · Xinhua Zhang · Dale Schuurmans -
2012 Poster: Accelerated Training for Matrix-norm Regularization: A Boosting Approach »
Xinhua Zhang · Yao-Liang Yu · Dale Schuurmans -
2012 Poster: A Polynomial-time Form of Robust Regression »
Yao-Liang Yu · Özlem Aslan · Dale Schuurmans -
2010 Poster: Relaxed Clipping: A Global Training Method for Robust Regression and Classification »
Yao-Liang Yu · Min Yang · Linli Xu · Martha White · Dale Schuurmans -
2009 Poster: Convex Relaxation of Mixture Regression with Efficient Algorithms »
Novi Quadrianto · Tiberio Caetano · John Lim · Dale Schuurmans -
2009 Poster: A General Projection Property for Distribution Families »
Yao-Liang Yu · Yuxi Li · Dale Schuurmans · Csaba Szepesvari -
2007 Spotlight: Stable Dual Dynamic Programming »
Tao Wang · Daniel Lizotte · Michael Bowling · Dale Schuurmans -
2007 Poster: Stable Dual Dynamic Programming »
Tao Wang · Daniel Lizotte · Michael Bowling · Dale Schuurmans -
2007 Session: Spotlights »
Dale Schuurmans -
2007 Poster: Convex Relaxations of EM »
Yuhong Guo · Dale Schuurmans -
2007 Poster: Discriminative Batch Mode Active Learning »
Yuhong Guo · Dale Schuurmans -
2006 Poster: Learning to Model Spatial Dependency: Semi-Supervised Discriminative Random Fields »
Chi-Hoon Lee · Shaojun Wang · Feng Jiao · Dale Schuurmans · Russell Greiner -
2006 Poster: implicit Online Learning with Kernels »
Li Cheng · Vishwanathan S V N · Dale Schuurmans · Shaojun Wang · Terry Caelli