Timezone: »
In generative modeling, numerous successful approaches leverage a low-dimensional latent space, e.g., Stable Diffusion models the latent space induced by an encoder and generates images through a paired decoder. Although the selection of the latent space is empirically pivotal, determining the optimal choice and the process of identifying it remain unclear. In this study, we aim to shed light on this under-explored topic by rethinking the latent space from the perspective of model complexity. Our investigation starts with the classic generative adversarial networks (GANs). Inspired by the GAN training objective, we propose a novel "distance" between the latent and data distributions, whose minimization coincides with that of the generator complexity. The minimizer of this distance is characterized as the optimal data-dependent latent that most effectively capitalizes on the generator's capacity. Then, we consider parameterizing such a latent distribution by an encoder network and propose a two-stage training strategy called Decoupled Autoencoder (DAE), where the encoder is only updated in the first stage with an auxiliary decoder and then frozen in the second stage while the actual decoder is being trained. DAE can improve the latent distribution and as a result, improve the generative performance. Our theoretical analyses are corroborated by comprehensive experiments on various models such as VQGAN and Diffusion Transformer, where our modifications yield significant improvements in sample quality with decreased model complexity.
Author Information
Tianyang Hu (Huawei Noah’s Ark Lab)
Fei Chen (Huawei Noah's Ark Lab)
Haonan Wang (national university of singaore, National University of Singapore)
Jiawei Li (Huawei Technologies Ltd.)
Wenjia Wang (SAMSI)
Jiacheng Sun (Huawei Technologies Co., Ltd)
Zhenguo Li (Noah's Ark Lab, Huawei Tech Investment Co Ltd)
More from the Same Authors
-
2021 : One Million Scenes for Autonomous Driving: ONCE Dataset »
Jiageng Mao · Niu Minzhe · ChenHan Jiang · hanxue liang · Jingheng Chen · Xiaodan Liang · Yamin Li · Chaoqiang Ye · Wei Zhang · Zhenguo Li · Jie Yu · Hang Xu · Chunjing XU -
2021 Spotlight: iFlow: Numerically Invertible Flows for Efficient Lossless Compression via a Uniform Coder »
Shifeng Zhang · Ning Kang · Tom Ryder · Zhenguo Li -
2021 : SODA10M: A Large-Scale 2D Self/Semi-Supervised Object Detection Dataset for Autonomous Driving »
Jianhua Han · Xiwen Liang · Hang Xu · Kai Chen · Lanqing Hong · Jiageng Mao · Chaoqiang Ye · Wei Zhang · Zhenguo Li · Xiaodan Liang · Chunjing XU -
2021 : How Well Does Self-Supervised Pre-Training Perform with Streaming ImageNet? »
Dapeng Hu · Shipeng Yan · Qizhengqiu Lu · Lanqing Hong · Hailin Hu · Yifan Zhang · Zhenguo Li · Jiashi Feng -
2021 : Architecture Personalization in Resource-constrained Federated Learning »
Mi Luo · Fei Chen · Zhenguo Li · Jiashi Feng -
2022 Poster: CAGroup3D: Class-Aware Grouping for 3D Object Detection on Point Clouds »
Haiyang Wang · Lihe Ding · Shaocong Dong · Shaoshuai Shi · Aoxue Li · Jianan Li · Zhenguo Li · Liwei Wang -
2022 : Why Are Conditional Generative Models Better Than Unconditional Ones? »
Fan Bao · Chongxuan LI · Jiacheng Sun · Jun Zhu -
2023 : Robustness May be More Brittle than We Think under Different Degrees of Distribution Shifts »
Kaican Li · Yifan Zhang · Lanqing Hong · Zhenguo Li · Nevin L. Zhang -
2023 : Graph Neural Networks Benefit from Structural Information Provably: A Feature Learning Perspective »
Wei Huang · Yuan Cao · Haonan Wang · Xin Cao · Taiji Suzuki -
2023 : The Stronger the Diffusion Model, the Easier the Backdoor: Data Poisoning to Induce Copyright Breaches Without Adjusting Finetuning Pipeline »
Haonan Wang · Qianli Shen · Yao Tong · Yang Zhang · Kenji Kawaguchi -
2023 Poster: DiffComplete: Diffusion-based Generative 3D Shape Completion »
Ruihang Chu · Enze Xie · Shentong Mo · Zhenguo Li · Matthias Niessner · Chi-Wing Fu · Jiaya Jia -
2023 Poster: SA-Solver: Stochastic Adams Solver for Fast Sampling of Diffusion Models »
Shuchen Xue · Mingyang Yi · Weijian Luo · Shifeng Zhang · Jiacheng Sun · Zhenguo Li · Zhi-Ming Ma -
2023 Poster: Constrained Policy Optimization with Explicit Behavior Density For Offline Reinforcement Learning »
Jing Zhang · Chi Zhang · Wenjia Wang · Bingyi Jing -
2023 Poster: Deep Insights into Noisy Pseudo Labeling on Graph Data »
Botao WANG · Jia Li · Yang Liu · Jiashun Cheng · Yu Rong · Wenjia Wang · Fugee Tsung -
2023 Poster: Model-enhanced Vector Index »
Hailin Zhang · Yujing Wang · Qi Chen · Ruiheng Chang · Ting Zhang · Ziming Miao · Yingyan Hou · Yang Ding · Xupeng Miao · Haonan Wang · Bochen Pang · Yuefeng Zhan · Hao Sun · Weiwei Deng · Qi Zhang · Fan Yang · Xing Xie · Mao Yang · Bin CUI -
2023 Poster: DiT-3D: Exploring Plain Diffusion Transformers for 3D Shape Generation »
Shentong Mo · Enze Xie · Ruihang Chu · Lanqing Hong · Matthias Niessner · Zhenguo Li -
2023 Poster: Diff-Instruct: A Universal Approach for Transferring Knowledge From Pre-trained Diffusion Models »
Weijian Luo · Tianyang Hu · Shifeng Zhang · Jiacheng Sun · Zhenguo Li · Zhihua Zhang -
2023 Poster: Diffusion Models and Semi-Supervised Learners Benefit Mutually with Few Labels »
Zebin You · Yong Zhong · Fan Bao · Jiacheng Sun · Chongxuan LI · Jun Zhu -
2023 Poster: T2I-CompBench: A Comprehensive Benchmark for Open-world Compositional Text-to-image Generation »
Kaiyi Huang · Kaiyue Sun · Enze Xie · Zhenguo Li · Xihui Liu -
2022 Spotlight: Lightning Talks 2B-3 »
Jie-Jing Shao · Jiangmeng Li · Jiashuo Liu · Zongbo Han · Tianyang Hu · Jiayun Wu · Wenwen Qiang · Jun WANG · Zhipeng Liang · Lan-Zhe Guo · Wenjia Wang · Yanan Zhang · Xiao-wen Yang · Fan Yang · Bo Li · Wenyi Mo · Zhenguo Li · Liu Liu · Peng Cui · Yu-Feng Li · Changwen Zheng · Lanqing Li · Yatao Bian · Bing Su · Hui Xiong · Peilin Zhao · Bingzhe Wu · Changqing Zhang · Jianhua Yao -
2022 Spotlight: Understanding Square Loss in Training Overparametrized Neural Network Classifiers »
Tianyang Hu · Jun WANG · Wenjia Wang · Zhenguo Li -
2022 Poster: A Neural Corpus Indexer for Document Retrieval »
Yujing Wang · Yingyan Hou · Haonan Wang · Ziming Miao · Shibin Wu · Hao Sun · Qi Chen · Yuqing Xia · Chengmin Chi · Guoshuai Zhao · Zheng Liu · Xing Xie · Hao Sun · Weiwei Deng · Qi Zhang · Mao Yang -
2022 Poster: DetCLIP: Dictionary-Enriched Visual-Concept Paralleled Pre-training for Open-world Detection »
Lewei Yao · Jianhua Han · Youpeng Wen · Xiaodan Liang · Dan Xu · Wei Zhang · Zhenguo Li · Chunjing XU · Hang Xu -
2022 Poster: Deep Active Learning by Leveraging Training Dynamics »
Haonan Wang · Wei Huang · Ziwei Wu · Hanghang Tong · Andrew J Margenot · Jingrui He -
2022 Poster: ZooD: Exploiting Model Zoo for Out-of-Distribution Generalization »
Qishi Dong · Awais Muhammad · Fengwei Zhou · Chuanlong Xie · Tianyang Hu · Yongxin Yang · Sung-Ho Bae · Zhenguo Li -
2022 Poster: Understanding Programmatic Weak Supervision via Source-aware Influence Function »
Jieyu Zhang · Haonan Wang · Cheng-Yu Hsieh · Alexander Ratner -
2022 Poster: Understanding Square Loss in Training Overparametrized Neural Network Classifiers »
Tianyang Hu · Jun WANG · Wenjia Wang · Zhenguo Li -
2021 : Layer-Parallel Training of Residual Networks with Auxiliary Variables »
Qi Sun · Hexin Dong · Zewei Chen · WeiZhen Dian · Jiacheng Sun · Yitong Sun · Zhenguo Li · Bin Dong -
2021 : Contributed Talk 3: Architecture Personalization in Resource-constrained Federated Learning »
Mi Luo · Fei Chen · Zhenguo Li · Jiashi Feng -
2021 Poster: No Fear of Heterogeneity: Classifier Calibration for Federated Learning with Non-IID Data »
Mi Luo · Fei Chen · Dapeng Hu · Yifan Zhang · Jian Liang · Jiashi Feng -
2021 Poster: iFlow: Numerically Invertible Flows for Efficient Lossless Compression via a Uniform Coder »
Shifeng Zhang · Ning Kang · Tom Ryder · Zhenguo Li -
2021 Poster: On Effective Scheduling of Model-based Reinforcement Learning »
Hang Lai · Jian Shen · Weinan Zhang · Yimin Huang · Xing Zhang · Ruiming Tang · Yong Yu · Zhenguo Li -
2021 Poster: OSOA: One-Shot Online Adaptation of Deep Generative Models for Lossless Compression »
Chen Zhang · Shifeng Zhang · Fabio Maria Carlucci · Zhenguo Li -
2021 Poster: MixACM: Mixup-Based Robustness Transfer via Distillation of Activated Channel Maps »
Awais Muhammad · Fengwei Zhou · Chuanlong Xie · Jiawei Li · Sung-Ho Bae · Zhenguo Li -
2021 Poster: Towards a Theoretical Framework of Out-of-Distribution Generalization »
Haotian Ye · Chuanlong Xie · Tianle Cai · Ruichen Li · Zhenguo Li · Liwei Wang -
2020 Poster: Bridging the Gap between Sample-based and One-shot Neural Architecture Search with BONAS »
Han Shi · Renjie Pi · Hang Xu · Zhenguo Li · James Kwok · Tong Zhang -
2020 Poster: Locally Differentially Private (Contextual) Bandits Learning »
Kai Zheng · Tianle Cai · Weiran Huang · Zhenguo Li · Liwei Wang