Timezone: »
Large Language Models (LLMs) have demonstrated remarkable capabilities in performing complex tasks. Moreover, recent research has shown that incorporating human-annotated rationales (e.g., Chain-of-Thought prompting) during in-context learning can significantly enhance the performance of these models, particularly on tasks that require reasoning capabilities. However, incorporating such rationales poses challenges in terms of scalability as this requires a high degree of human involvement. In this work, we present a novel framework, Amplifying Model Performance by Leveraging In-Context Learning with Post Hoc Explanations (AMPLIFY), which addresses the aforementioned challenges by automating the process of rationale generation. To this end, we leverage post hoc explanation methods which output attribution scores (explanations) capturing the influence of each of the input features on model predictions. More specifically, we construct automated natural language rationales that embed insights from post hoc explanations to provide corrective signals to LLMs. Extensive experimentation with real-world datasets demonstrates that our framework, AMPLIFY, leads to prediction accuracy improvements of about 10-25% over a wide range of tasks, including those where prior approaches which rely on human-annotated rationales such as Chain-of-Thought prompting fall short. Our work makes one of the first attempts at highlighting the potential of post hoc explanations as valuable tools for enhancing the effectiveness of LLMs. Furthermore, we conduct additional empirical analyses and ablation studies to demonstrate the impact of each of the components of AMPLIFY, which, in turn, lead to critical insights for refining in context learning.
Author Information
Satyapriya Krishna (Harvard University)
Jiaqi Ma (University of Illinois Urbana-Champaign)
Dylan Slack (Scale AI)
Asma Ghandeharioun (Google Research)
Sameer Singh (University of California, Irvine)
Sameer Singh is an Assistant Professor at UC Irvine working on robustness and interpretability of machine learning. Sameer has presented tutorials and invited workshop talks at EMNLP, Neurips, NAACL, WSDM, ICLR, ACL, and AAAI, and received paper awards at KDD 2016, ACL 2018, EMNLP 2019, AKBC 2020, and ACL 2020. Website: http://sameersingh.org/
Himabindu Lakkaraju (Harvard)
More from the Same Authors
-
2021 Spotlight: Subgroup Generalization and Fairness of Graph Neural Networks »
Jiaqi Ma · Junwei Deng · Qiaozhu Mei -
2021 : Defuse: Training More Robust Models through Creation and Correction of Novel Model Errors »
Dylan Slack · Krishnaram Kenthapadi -
2021 : Cutting Down on Prompts and Parameters:Simple Few-Shot Learning with Language Models »
Robert Logan · Ivana Balazevic · Eric Wallace · Fabio Petroni · Sameer Singh · Sebastian Riedel -
2022 : Quantifying Social Biases Using Templates is Unreliable »
Preethi Seshadri · Pouya Pezeshkpour · Sameer Singh -
2022 : TalkToModel: Explaining Machine Learning Models with Interactive Natural Language Conversations »
Dylan Slack · Satyapriya Krishna · Himabindu Lakkaraju · Sameer Singh -
2022 : On the Impact of Adversarially Robust Models on Algorithmic Recourse »
Satyapriya Krishna · Chirag Agarwal · Himabindu Lakkaraju -
2023 : EchoPrompt: Instructing the Model to Rephrase Queries for Improved In-context Learning »
Raja Sekhar Reddy Mekala · Yasaman Razeghi · Sameer Singh -
2023 : Are Large Language Models Post Hoc Explainers? »
Nicholas Kroeger · Dan Ley · Satyapriya Krishna · Chirag Agarwal · Himabindu Lakkaraju -
2023 : A Study on the Calibration of In-context Learning »
Hanlin Zhang · yifan zhang · Yaodong Yu · Eric Xing · Himabindu Lakkaraju · Sham Kakade -
2023 : Uncertainty In Natural Language Explanations Of Large Language Models »
Sree Harsha Tanneru · Chirag Agarwal · Himabindu Lakkaraju -
2023 : Are Large Language Models Post Hoc Explainers? »
Nicholas Kroeger · Dan Ley · Satyapriya Krishna · Chirag Agarwal · Himabindu Lakkaraju -
2023 : Uncertainty In Natural Language Explanations Of Large Language Models »
Sree Harsha Tanneru · Chirag Agarwal · Himabindu Lakkaraju -
2023 : Investigating the Fairness of Large Language Models for Predictions on Tabular Data »
Yanchen Liu · Srishti Gautam · Jiaqi Ma · Himabindu Lakkaraju -
2023 : Are Models Biased on Text without Gender-related Language? »
Catarina Belém · Preethi Seshadri · Yasaman Razeghi · Sameer Singh -
2023 : Comparing Representational and Functional Similarity in Small Transformer Language Models »
Dan Friedman · Andrew Lampinen · Lucas Dixon · Danqi Chen · Asma Ghandeharioun -
2023 : Can LLMs Effectively Leverage Graph Structural Information: When and Why »
Jin Huang · Xingjian Zhang · Qiaozhu Mei · Jiaqi Ma -
2023 : Selective Perception: Learning Concise State Descriptions for Language Model Actors »
Kolby T Nottingham · Yasaman Razeghi · Kyungmin Kim · JB Lanier · Pierre Baldi · Roy Fox · Sameer Singh -
2023 : Selective Perception: Learning Concise State Descriptions for Language Model Actors »
Kolby T Nottingham · Yasaman Razeghi · Kyungmin Kim · JB Lanier · Pierre Baldi · Roy Fox · Sameer Singh -
2023 : Comparing Representational and Functional Similarity in Small Transformer Language Models »
Dan Friedman · Andrew Lampinen · Lucas Dixon · Danqi Chen · Asma Ghandeharioun -
2023 : Backtracking Mathematical Reasoning of Language Models to the Pretraining Data »
Yasaman Razeghi · Hamish Ivison · Sameer Singh · Yanai Elazar -
2023 Workshop: Regulatable ML: Towards Bridging the Gaps between Machine Learning Research and Regulations »
Jiaqi Ma · Danielle Belgrave · P-R Stark · Daniele Magazzeni · Himabindu Lakkaraju · Junwei Deng · Usha Bhalla · Sarah Tan · Chirag Agarwal -
2023 Workshop: XAI in Action: Past, Present, and Future Applications »
Chhavi Yadav · Michal Moshkovitz · Nave Frost · Suraj Srinivas · Bingqing Chen · Valentyn Boreiko · Himabindu Lakkaraju · J. Zico Kolter · Dotan Di Castro · Kamalika Chaudhuri -
2023 Poster: $\mathcal{M}^4$: A Unified XAI Benchmark for Faithfulness Evaluation of Feature Attribution Methods across Metrics, Modalities and Models »
Xuhong Li · Mengnan Du · Jiamin Chen · Yekun Chai · Himabindu Lakkaraju · Haoyi Xiong -
2023 Poster: Discriminative Feature Attributions: Bridging Post Hoc Explainability and Inherent Interpretability »
Usha Bhalla · Suraj Srinivas · Himabindu Lakkaraju -
2023 Poster: Which Models have Perceptually-Aligned Gradients? An Explanation via Off-Manifold Robustness »
Suraj Srinivas · Sebastian Bordt · Himabindu Lakkaraju -
2023 Poster: A Metadata-Driven Approach to Understand Graph Neural Networks »
Ting Wei Li · Qiaozhu Mei · Jiaqi Ma -
2023 Poster: Does Localization Inform Editing? Surprising Differences in Causality-Based Localization vs. Knowledge Editing in Language Models »
Peter Hase · Mohit Bansal · Been Kim · Asma Ghandeharioun -
2022 : Contributed Talk: TalkToModel: Explaining Machine Learning Models with Interactive Natural Language Conversations »
Dylan Slack · Satyapriya Krishna · Himabindu Lakkaraju · Sameer Singh -
2022 Poster: OpenXAI: Towards a Transparent Evaluation of Model Explanations »
Chirag Agarwal · Satyapriya Krishna · Eshika Saxena · Martin Pawelczyk · Nari Johnson · Isha Puri · Marinka Zitnik · Himabindu Lakkaraju -
2022 Poster: Which Explanation Should I Choose? A Function Approximation Perspective to Characterizing Post Hoc Explanations »
Tessa Han · Suraj Srinivas · Himabindu Lakkaraju -
2022 Poster: Efficient Training of Low-Curvature Neural Networks »
Suraj Srinivas · Kyle Matoba · Himabindu Lakkaraju · François Fleuret -
2021 : [S6] Defuse: Training More Robust Models through Creation and Correction of Novel Model Errors »
Dylan Slack · Krishnaram Kenthapadi -
2021 : Cutting Down on Prompts and Parameters:Simple Few-Shot Learning with Language Models »
Robert Logan · Ivana Balazevic · Eric Wallace · Fabio Petroni · Sameer Singh · Sebastian Riedel -
2021 Poster: Reliable Post hoc Explanations: Modeling Uncertainty in Explainability »
Dylan Slack · Anna Hilgard · Sameer Singh · Himabindu Lakkaraju -
2021 : PYLON: A PyTorch Framework for Learning with Constraints »
Kareem Ahmed · Tao Li · Nu Mai Thy Ton · Quan Guo · Kai-Wei Chang · Parisa Kordjamshidi · Vivek Srikumar · Guy Van den Broeck · Sameer Singh -
2021 Poster: Subgroup Generalization and Fairness of Graph Neural Networks »
Jiaqi Ma · Junwei Deng · Qiaozhu Mei -
2021 Poster: Counterfactual Explanations Can Be Manipulated »
Dylan Slack · Anna Hilgard · Himabindu Lakkaraju · Sameer Singh -
2020 Poster: Towards More Practical Adversarial Attacks on Graph Neural Networks »
Jiaqi Ma · Shuangrui Ding · Qiaozhu Mei -
2020 Tutorial: (Track2) Explaining Machine Learning Predictions: State-of-the-art, Challenges, and Opportunities Q&A »
Himabindu Lakkaraju · Julius Adebayo · Sameer Singh -
2020 Tutorial: (Track2) Explaining Machine Learning Predictions: State-of-the-art, Challenges, and Opportunities »
Himabindu Lakkaraju · Julius Adebayo · Sameer Singh -
2019 : Poster session »
Jindong Gu · Alice Xiang · Atoosa Kasirzadeh · Zhiwei Han · Omar U. Florez · Frederik Harder · An-phi Nguyen · Amir Hossein Akhavan Rahnama · Michele Donini · Dylan Slack · Junaid Ali · Paramita Koley · Michiel Bakker · Anna Hilgard · Hailey Joren · Gonzalo Ramos · Jialin Lu · Jingying Yang · Margarita Boyarskaya · Martin Pawelczyk · Kacper Sokol · Mimansa Jaiswal · Umang Bhatt · David Alvarez-Melis · Aditya Grover · Charles Marx · Sherry Yang · Jingyan Wang · Gökhan Çapan · Hanchen Wang · Steffen Grünewälder · Moein Khajehnejad · Gourab Patro · Russell Kunes · Samuel Deng · Yuanting Liu · Luca Oneto · Mengze Li · Thomas Weber · Stefan Matthes · Duy Patrick Tu -
2019 : Poster Session #1 »
Adarsh Jamadandi · Sophia Sanborn · Huaxiu Yao · Chen Cai · Yu Chen · Jean-Marc Andreoli · Niklas Stoehr · Shih-Yang Su · Tony Duan · Fábio Ferreira · Davide Belli · Amit Boyarski · Ze Ye · Elahe Ghalebi · Arindam Sarkar · MAHMOUD KHADEMI · Evgeniy Faerman · Joey Bose · Jiaqi Ma · Lin Meng · Seyed Mehran Kazemi · Guangtao Wang · Tong Wu · Yuexin Wu · Chaitanya K. Joshi · Marc Brockschmidt · Daniele Zambon · Colin Graber · Rafaël Van Belle · Osman Asif Malik · Xavier Glorot · Mario Krenn · Chris Cameron · Binxuan Huang · George Stoica · Alexia Toumpa -
2019 Workshop: KR2ML - Knowledge Representation and Reasoning Meets Machine Learning »
Veronika Thost · Christian Muise · Kartik Talamadupula · Sameer Singh · Christopher Ré -
2019 Poster: A Flexible Generative Framework for Graph-based Semi-supervised Learning »
Jiaqi Ma · Weijing Tang · Ji Zhu · Qiaozhu Mei -
2019 Demonstration: AllenNLP Interpret: Explaining Predictions of NLP Models »
Jens Tuyls · Eric Wallace · Matt Gardner · Junlin Wang · Sameer Singh · Sanjay Subramanian -
2019 Poster: Approximating Interactive Human Evaluation with Self-Play for Open-Domain Dialog Systems »
Asma Ghandeharioun · Judy Hanwen Shen · Natasha Jaques · Craig Ferguson · Noah Jones · Agata Lapedriza · Rosalind Picard