Timezone: »

 
Poster
High Precision Causal Model Evaluation with Conditional Randomization
Chao Ma · Cheng Zhang

Tue Dec 12 03:15 PM -- 05:15 PM (PST) @ Great Hall & Hall B1+B2 #2014

The gold standard for causal model evaluation involves comparing model predictions with true effects estimated from randomized controlled trials (RCT). However, RCTs are not always feasible or ethical to perform. In contrast, conditionally randomized experiments based on inverse probability weighting (IPW) offer a more realistic approach but may suffer from high estimation variance. To tackle this challenge and enhance causal model evaluation in real-world conditional randomization settings, we introduce a novel low-variance estimator for causal error, dubbed as the pairs estimator. By applying the same IPW estimator to both the model and true experimental effects, our estimator effectively cancels out the variance due to IPW and achieves a smaller asymptotic variance. Empirical studies demonstrate the improved of our estimator, highlighting its potential on achieving near-RCT performance. Our method offers a simple yet powerful solution to evaluate causal inference models in conditional randomization settings without complicated modification of the IPW estimator itself, paving the way for more robust and reliable model assessments.

Author Information

Chao Ma (Microsoft)
Cheng Zhang (Microsoft Research, Cambridge, UK)

Cheng Zhang is a principal researcher at Microsoft Research Cambridge, UK. She leads the Data Efficient Decision Making (Project Azua) team in Microsoft. Before joining Microsoft, she was with the statistical machine learning group of Disney Research Pittsburgh, located at Carnegie Mellon University. She received her Ph.D. from the KTH Royal Institute of Technology. She is interested in advancing machine learning methods, including variational inference, deep generative models, and sequential decision-making under uncertainty; and adapting machine learning to social impactful applications such as education and healthcare. She co-organized the Symposium on Advances in Approximate Bayesian Inference from 2017 to 2019.

More from the Same Authors