Timezone: »
Poster
Online Pricing for Multi-User Multi-Item Markets
Yigit Efe Erginbas · Thomas Courtade · Kannan Ramchandran · Soham Phade
Online pricing has been the focus of extensive research in recent years, particularly in the context of selling an item to sequentially arriving users. However, what if a provider wants to maximize revenue by selling multiple items to multiple users in each round? This presents a complex problem, as the provider must intelligently offer the items to those users who value them the most without exceeding their highest acceptable prices. In this study, we tackle this challenge by designing online algorithms that can efficiently offer and price items while learning user valuations from accept/reject feedback. We focus on three user valuation models (fixed valuations, random experiences, and random valuations) and provide algorithms with nearly-optimal revenue regret guarantees. In particular, for any market setting with $N$ users, $M$ items, and load $L$ (which roughly corresponds to the maximum number of simultaneous allocations possible), our algorithms achieve regret of order $O(NM\log\log(LT))$ under fixed valuations model, $\widetilde{O}(\sqrt{NMLT})$ under random experiences model and $\widetilde{O}(\sqrt{NMLT})$ under random valuations model in $T$ rounds.
Author Information
Yigit Efe Erginbas (University of California, Berkeley)
Thomas Courtade (University of California, Berkeley)
Kannan Ramchandran (UC Berkeley)
Soham Phade (Wayve AI)
More from the Same Authors
-
2023 : The Fair Value of Data Under Heterogeneous Privacy Constraints in Federated Learning »
Justin Kang · Kannan Ramchandran · Ramtin Pedarsani -
2023 : MERMAIDE: Learning to Align Learners using Model-Based Meta-Learning »
Arundhati Banerjee · Soham Phade · Stefano Ermon · Stephan Zheng -
2023 : Pairwise Proximal Policy Optimization: Harnessing Relative Feedback for LLM Alignment »
Tianhao Wu · Banghua Zhu · Ruoyu Zhang · Zhaojin Wen · Kannan Ramchandran · Jiantao Jiao -
2023 : Pairwise Proximal Policy Optimization: Harnessing Relative Feedback for LLM Alignment »
Tianhao Wu · Banghua Zhu · Ruoyu Zhang · Zhaojin Wen · Kannan Ramchandran · Jiantao Jiao -
2023 Poster: Learning a 1-layer conditional generative model in total variation »
Ajil Jalal · Justin Kang · Ananya Uppal · Kannan Ramchandran · Eric Price -
2023 Poster: Greedy Pruning with Group Lasso Provably Generalizes for Matrix Sensing »
Nived Rajaraman · Fnu Devvrit · Aryan Mokhtari · Kannan Ramchandran -
2022 Poster: Minimax Optimal Online Imitation Learning via Replay Estimation »
Gokul Swamy · Nived Rajaraman · Matt Peng · Sanjiban Choudhury · J. Bagnell · Steven Wu · Jiantao Jiao · Kannan Ramchandran -
2021 Poster: On the Value of Interaction and Function Approximation in Imitation Learning »
Nived Rajaraman · Yanjun Han · Lin Yang · Jingbo Liu · Jiantao Jiao · Kannan Ramchandran -
2021 Poster: Taxonomizing local versus global structure in neural network loss landscapes »
Yaoqing Yang · Liam Hodgkinson · Ryan Theisen · Joe Zou · Joseph Gonzalez · Kannan Ramchandran · Michael Mahoney -
2020 Poster: Boundary thickness and robustness in learning models »
Yaoqing Yang · Rajiv Khanna · Yaodong Yu · Amir Gholami · Kurt Keutzer · Joseph Gonzalez · Kannan Ramchandran · Michael Mahoney -
2020 Poster: Toward the Fundamental Limits of Imitation Learning »
Nived Rajaraman · Lin Yang · Jiantao Jiao · Kannan Ramchandran -
2020 Poster: An Efficient Framework for Clustered Federated Learning »
Avishek Ghosh · Jichan Chung · Dong Yin · Kannan Ramchandran -
2017 : Posters and Coffee »
Jean-Baptiste Tristan · Yunseong Lee · Anna Veronika Dorogush · Shohei Hido · Michael Terry · Mennatullah Siam · Hidemoto Nakada · Cody Coleman · Jung-Woo Ha · Hao Zhang · Adam Stooke · Chen Meng · Christopher Kappler · Lane Schwartz · Christopher Olston · Sebastian Schelter · Minmin Sun · Daniel Kang · Waldemar Hummer · Jichan Chung · Tim Kraska · Kannan Ramchandran · Nick Hynes · Christoph Boden · Donghyun Kwak -
2016 Poster: Cyclades: Conflict-free Asynchronous Machine Learning »
Xinghao Pan · Maximilian Lam · Stephen Tu · Dimitris Papailiopoulos · Ce Zhang · Michael Jordan · Kannan Ramchandran · Christopher RĂ© · Benjamin Recht -
2015 Poster: Parallel Correlation Clustering on Big Graphs »
Xinghao Pan · Dimitris Papailiopoulos · Samet Oymak · Benjamin Recht · Kannan Ramchandran · Michael Jordan