Timezone: »
Regardless of the particular task we want to perform in an environment, there are often shared safety constraints we want our agents to respect. For example, regardless of whether it is making a sandwich or clearing the table, a kitchen robot should not break a plate. Manually specifying such a constraint can be both time-consuming and error-prone. We show how to learn constraints from expert demonstrations of safe task completion by extending inverse reinforcement learning (IRL) techniques to the space of constraints. Intuitively, we learn constraints that forbid highly rewarding behavior that the expert could have taken but chose not to. Unfortunately, the constraint learning problem is rather ill-posed and typically leads to overly conservative constraints that forbid all behavior that the expert did not take. We counter this by leveraging diverse demonstrations that naturally occur in multi-task setting to learn a tighter set of constraints. We validate our method with simulation experiments on high-dimensional continuous control tasks.
Author Information
Konwoo Kim
Gokul Swamy (Carnegie Mellon University)
ZUXIN LIU (Carnegie Mellon University)
DING ZHAO (Carnegie Mellon University)
Sanjiban Choudhury (Cornell University)
Steven Wu (Carnegie Mellon University)

I am an Assistant Professor in the School of Computer Science at Carnegie Mellon University. My broad research interests are in algorithms and machine learning. These days I am excited about: - Foundations of responsible AI, with emphasis on privacy and fairness considerations. - Interactive learning, including contextual bandits and reinforcement learning, and its interactions with causal inference and econometrics. - Economic aspects of machine learning, with a focus on learning in the presence of strategic agents.
More from the Same Authors
-
2021 : What Would the Expert do()?: Causal Imitation Learning »
Gokul Swamy · Sanjiban Choudhury · James Bagnell · Steven Wu -
2021 : Iterative Methods for Private Synthetic Data: Unifying Framework and New Methods »
Terrance Liu · Giuseppe Vietri · Steven Wu -
2021 : What Would the Expert do()?: Causal Imitation Learning »
Gokul Swamy · Sanjiban Choudhury · James Bagnell · Steven Wu -
2021 : What Would the Expert $do(\cdot)$?: Causal Imitation Learning »
Gokul Swamy · Sanjiban Choudhury · James Bagnell · Steven Wu -
2021 : Bayesian Persuasion for Algorithmic Recourse »
Keegan Harris · Valerie Chen · Joon Sik Kim · Ameet Talwalkar · Hoda Heidari · Steven Wu -
2021 : What Would the Expert $do(\cdot)$?: Causal Imitation Learning »
Gokul Swamy · Sanjiban Choudhury · James Bagnell · Steven Wu -
2021 : Information Discrepancy in Strategic Learning »
Yahav Bechavod · Chara Podimata · Steven Wu · Juba Ziani -
2021 : Gaming Helps! Learning from Strategic Interactions in Natural Dynamics »
Yahav Bechavod · Katrina Ligett · Steven Wu · Juba Ziani -
2021 : Bayesian Persuasion for Algorithmic Recourse »
Keegan Harris · Valerie Chen · Joon Kim · Ameet S Talwalkar · Hoda Heidari · Steven Wu -
2021 : What Would the Expert $do(\cdot)$?: Causal Imitation Learning »
Gokul Swamy · Sanjiban Choudhury · James Bagnell · Steven Wu -
2021 : What Would the Expert $do(\cdot)$?: Causal Imitation Learning »
Gokul Swamy · Sanjiban Choudhury · James Bagnell · Steven Wu -
2021 : What Would the Expert $do(\cdot)$?: Causal Imitation Learning »
Gokul Swamy · Sanjiban Choudhury · James Bagnell · Steven Wu -
2021 : Information Discrepancy in Strategic Learning »
Yahav Bechavod · Chara Podimata · Steven Wu · Juba Ziani -
2021 : Gaming Helps! Learning from Strategic Interactions in Natural Dynamics »
Yahav Bechavod · Katrina Ligett · Steven Wu · Juba Ziani -
2021 : Bayesian Persuasion for Algorithmic Recourse »
Keegan Harris · Valerie Chen · Joon Kim · Ameet S Talwalkar · Hoda Heidari · Steven Wu -
2022 : Strategy-Aware Contextual Bandits »
Keegan Harris · Chara Podimata · Steven Wu -
2022 : Hyper-Decision Transformer for Efficient Online Policy Adaptation »
Mengdi Xu · Yuchen Lu · Yikang Shen · Shun Zhang · DING ZHAO · Chuang Gan -
2022 : Choosing Public Datasets for Private Machine Learning via Gradient Subspace Distance »
Xin Gu · Gautam Kamath · Steven Wu -
2022 : Strategy-Aware Contextual Bandits »
Keegan Harris · Chara Podimata · Steven Wu -
2022 : Benchmarking Robustness under Distribution Shift of Multimodal Image-Text Models »
Jielin Qiu · Yi Zhu · Xingjian Shi · Zhiqiang Tang · DING ZHAO · Bo Li · Mu Li -
2022 : Strategy-Aware Contextual Bandits »
Keegan Harris · Chara Podimata · Steven Wu -
2022 : Differentially Private Gradient Boosting on Linear Learners for Tabular Data »
Saeyoung Rho · Shuai Tang · Sergul Aydore · Michael Kearns · Aaron Roth · Yu-Xiang Wang · Steven Wu · Cedric Archambeau -
2022 : Counterfactual Decision Support Under Treatment-Conditional Outcome Measurement Error »
Luke Guerdan · Amanda Coston · Kenneth Holstein · Steven Wu -
2022 : On the Robustness of Safe Reinforcement Learning under Observational Perturbations »
ZUXIN LIU · Zijian Guo · Zhepeng Cen · Huan Zhang · Jie Tan · Bo Li · DING ZHAO -
2023 : Stackelberg Games with Side Information »
Keegan Harris · Steven Wu · Maria-Florina Balcan -
2023 : Stackelberg Games with Side Information »
Keegan Harris · Steven Wu · Maria-Florina Balcan -
2023 : EvIL: Evolution Strategies for Generalisable Imitation Learning »
Silvia Sapora · Chris Lu · Gokul Swamy · Yee Whye Teh · Jakob Foerster -
2023 : Hybrid Inverse Reinforcement Learning »
Juntao Ren · Gokul Swamy · Steven Wu · J. Bagnell · Sanjiban Choudhury -
2023 : Policy Comparison Under Confounding »
Luke Guerdan · Amanda Coston · Steven Wu · Kenneth Holstein -
2023 : Membership Inference Attack on Diffusion Models via Quantile Regression »
Steven Wu · Shuai Tang · Sergul Aydore · Michael Kearns · Aaron Roth -
2023 : TAIL: Task-specific Adapters for Imitation Learning with Large Pretrained Models »
ZUXIN LIU · Jesse Zhang · Kavosh Asadi · Yao Liu · DING ZHAO · Shoham Sabach · Rasool Fakoor -
2023 : TAIL: Task-specific Adapters for Imitation Learning with Large Pretrained Models »
ZUXIN LIU · Jesse Zhang · Kavosh Asadi · Yao Liu · DING ZHAO · Shoham Sabach · Rasool Fakoor -
2023 : Creative Robot Tool Use with Large Language Models »
Mengdi Xu · Wenhao Yu · Peide Huang · Shiqi Liu · Xilun Zhang · Yaru Niu · Tingnan Zhang · Fei Xia · Jie Tan · DING ZHAO -
2023 : Creative Robot Tool Use with Large Language Models »
Mengdi Xu · Wenhao Yu · Peide Huang · Shiqi Liu · Xilun Zhang · Yaru Niu · Tingnan Zhang · Fei Xia · Jie Tan · DING ZHAO -
2023 Poster: Scalable Membership Inference Attacks via Quantile Regression »
Martin Bertran · Shuai Tang · Aaron Roth · Michael Kearns · Jamie Morgenstern · Steven Wu -
2023 Poster: Meta-Learning Adversarial Bandit Algorithms »
Misha Khodak · Ilya Osadchiy · Keegan Harris · Maria-Florina Balcan · Kfir Y. Levy · Ron Meir · Steven Wu -
2023 Poster: Demo2Code: From Summarizing Demonstrations to Synthesizing Code via Extended Chain-of-Thought »
Yuki Wang · Gonzalo Gonzalez-Pumariega · Yash Sharma · Sanjiban Choudhury -
2023 Poster: Strategic Apple Tasting »
Keegan Harris · Chara Podimata · Steven Wu -
2023 Poster: Seeing is not Believing: Robust Reinforcement Learning against Spurious Correlation »
Wenhao Ding · Laixi Shi · Yuejie Chi · DING ZHAO -
2023 Poster: Adaptive Privacy Composition for Accuracy-first Mechanisms »
Ryan Rogers · Gennady Samorodnitsk · Steven Wu · Aaditya Ramdas -
2023 Poster: Adaptive Principal Component Regression with Applications to Panel Data »
Anish Agarwal · Keegan Harris · Justin Whitehouse · Steven Wu -
2023 Poster: Constraint-Conditioned Policy Optimization for Versatile Safe Reinforcement Learning »
Yihang Yao · ZUXIN LIU · Zhepeng Cen · Jiacheng Zhu · Wenhao Yu · Tingnan Zhang · DING ZHAO -
2023 Poster: On the Sublinear Regret of GP-UCB »
Justin Whitehouse · Aaditya Ramdas · Steven Wu -
2022 Poster: Generalizing Goal-Conditioned Reinforcement Learning with Variational Causal Reasoning »
Wenhao Ding · Haohong Lin · Bo Li · DING ZHAO -
2022 Poster: On Privacy and Personalization in Cross-Silo Federated Learning »
Ken Liu · Shengyuan Hu · Steven Wu · Virginia Smith -
2022 Poster: Curriculum Reinforcement Learning using Optimal Transport via Gradual Domain Adaptation »
Peide Huang · Mengdi Xu · Jiacheng Zhu · Laixi Shi · Fei Fang · DING ZHAO -
2022 Poster: Brownian Noise Reduction: Maximizing Privacy Subject to Accuracy Constraints »
Justin Whitehouse · Aaditya Ramdas · Steven Wu · Ryan Rogers -
2022 Poster: Incentivizing Combinatorial Bandit Exploration »
Xinyan Hu · Dung Ngo · Aleksandrs Slivkins · Steven Wu -
2022 Poster: Sequence Model Imitation Learning with Unobserved Contexts »
Gokul Swamy · Sanjiban Choudhury · J. Bagnell · Steven Wu -
2022 Poster: Private Synthetic Data for Multitask Learning and Marginal Queries »
Giuseppe Vietri · Cedric Archambeau · Sergul Aydore · William Brown · Michael Kearns · Aaron Roth · Ankit Siva · Shuai Tang · Steven Wu -
2022 Poster: SafeBench: A Benchmarking Platform for Safety Evaluation of Autonomous Vehicles »
Chejian Xu · Wenhao Ding · Weijie Lyu · ZUXIN LIU · Shuai Wang · Yihan He · Hanjiang Hu · DING ZHAO · Bo Li -
2022 Poster: Minimax Optimal Online Imitation Learning via Replay Estimation »
Gokul Swamy · Nived Rajaraman · Matt Peng · Sanjiban Choudhury · J. Bagnell · Steven Wu · Jiantao Jiao · Kannan Ramchandran -
2022 Poster: Bayesian Persuasion for Algorithmic Recourse »
Keegan Harris · Valerie Chen · Joon Kim · Ameet Talwalkar · Hoda Heidari · Steven Wu -
2021 : What Would the Expert $do(\cdot)$?: Causal Imitation Learning (Gokul Swamy) »
Gokul Swamy -
2021 : Leveraging strategic interactions for causal discovery »
Steven Wu -
2021 : Bayesian Persuasion for Algorithmic Recourse »
Keegan Harris · Valerie Chen · Joon Sik Kim · Ameet Talwalkar · Hoda Heidari · Steven Wu -
2021 : Contributed Talk 2: What Would the Expert do?: Causal Imitation Learning »
Gokul Swamy -
2021 : What Would the Expert do()?: Causal Imitation Learning »
Gokul Swamy · Sanjiban Choudhury · James Bagnell · Steven Wu -
2021 Poster: Iterative Methods for Private Synthetic Data: Unifying Framework and New Methods »
Terrance Liu · Giuseppe Vietri · Steven Wu -
2021 Poster: Stateful Strategic Regression »
Keegan Harris · Hoda Heidari · Steven Wu -
2020 Poster: Metric-Free Individual Fairness in Online Learning »
Yahav Bechavod · Christopher Jung · Steven Wu -
2020 Poster: Understanding Gradient Clipping in Private SGD: A Geometric Perspective »
Xiangyi Chen · Steven Wu · Mingyi Hong -
2020 Poster: Distributed Training with Heterogeneous Data: Bridging Median- and Mean-Based Algorithms »
Xiangyi Chen · Tiancong Chen · Haoran Sun · Steven Wu · Mingyi Hong -
2020 Spotlight: Understanding Gradient Clipping in Private SGD: A Geometric Perspective »
Xiangyi Chen · Steven Wu · Mingyi Hong -
2020 Oral: Metric-Free Individual Fairness in Online Learning »
Yahav Bechavod · Christopher Jung · Steven Wu -
2020 Session: Orals & Spotlights Track 20: Social/Adversarial Learning »
Steven Wu · Miro Dudik -
2020 Poster: Task-Agnostic Online Reinforcement Learning with an Infinite Mixture of Gaussian Processes »
Mengdi Xu · Wenhao Ding · Jiacheng Zhu · ZUXIN LIU · Baiming Chen · Ding Zhao -
2019 Poster: Equal Opportunity in Online Classification with Partial Feedback »
Yahav Bechavod · Katrina Ligett · Aaron Roth · Bo Waggoner · Steven Wu -
2019 Poster: Random Quadratic Forms with Dependence: Applications to Restricted Isometry and Beyond »
Arindam Banerjee · Qilong Gu · Vidyashankar Sivakumar · Steven Wu -
2019 Poster: Private Hypothesis Selection »
Mark Bun · Gautam Kamath · Thomas Steinke · Steven Wu -
2019 Poster: Locally Private Gaussian Estimation »
Matthew Joseph · Janardhan Kulkarni · Jieming Mao · Steven Wu -
2017 : Spotlights »
Antti Kangasrääsiö · Richard Everett · Yitao Liang · Yang Cai · Steven Wu · Vidya Muthukumar · Sven Schmit -
2017 Poster: Accuracy First: Selecting a Differential Privacy Level for Accuracy Constrained ERM »
Katrina Ligett · Seth Neel · Aaron Roth · Bo Waggoner · Steven Wu -
2016 Poster: Learning from Rational Behavior: Predicting Solutions to Unknown Linear Programs »
Shahin Jabbari · Ryan Rogers · Aaron Roth · Steven Wu