Timezone: »
Multi-source domain adaptation (MSDA) methods aim to transfer knowledge from multiple labeled source domains to an unlabeled target domain. Although current methods achieve target joint distribution identifiability by enforcing minimal changes across domains, they often necessitate stringent conditions, such as an adequate number of domains, monotonic transformation of latent variables, and invariant label distributions. These requirements are challenging to satisfy in real-world applications. To mitigate the need for these strict assumptions, we propose a subspace identification theory that guarantees the disentanglement of domain-invariant and domain-specific variables under less restrictive constraints regarding domain numbers and transformation properties and thereby facilitating domain adaptation by minimizing the impact of domain shifts on invariant variables. Based on this theory, we develop a Subspace Identification Guarantee (SIG) model that leverages variational inference. Furthermore, the SIG model incorporates class-aware conditional alignment to accommodate target shifts where label distributions change with the domain. Experimental results demonstrate that our SIG model outperforms existing MSDA techniques on various benchmark datasets, highlighting its effectiveness in real-world applications.
Author Information
Zijian Li (Guangdong University of Technology)
Ruichu Cai (Guangdong University of Technology)
Guangyi Chen (MBZUAI&CMU)
Boyang Sun (Mohamed bin Zayed University of Artificial Intelligence)
Zhifeng Hao (Foshan University)
Kun Zhang (CMU & MBZUAI)
More from the Same Authors
-
2022 : Tier Balancing: Towards Dynamic Fairness over Underlying Causal Factors »
Zeyu Tang · Yatong Chen · Yang Liu · Kun Zhang -
2022 : Scalable Causal Discovery with Score Matching »
Francesco Montagna · Nicoletta Noceti · Lorenzo Rosasco · Kun Zhang · Francesco Locatello -
2023 Poster: BCDiff: Bidirectional Consistent Diffusion for Instantaneous Trajectory Prediction »
Rongqing Li · Changsheng Li · Dongchun Ren · Guangyi Chen · Ye Yuan · Guoren Wang -
2023 : Procedural Fairness Through Decoupling Objectionable Data Generating Components »
Zeyu Tang · Jialu Wang · Yang Liu · Peter Spirtes · Kun Zhang -
2023 : Procedural Fairness Through Decoupling Objectionable Data Generating Components »
Zeyu Tang · Jialu Wang · Yang Liu · Peter Spirtes · Kun Zhang -
2023 Poster: On the Identifiability of Sparse ICA without Assuming Non-Gaussianity »
Ignavier Ng · Yujia Zheng · Xinshuai Dong · Kun Zhang -
2023 Poster: Generalizing Nonlinear ICA Beyond Structural Sparsity »
Yujia Zheng · Kun Zhang -
2023 Poster: Counterfactual Generation with Identifiability Guarantees »
Hanqi Yan · Lingjing Kong · Lin Gui · Yuejie Chi · Eric Xing · Yulan He · Kun Zhang -
2023 Poster: Temporally Disentangled Representation Learning under Unknown Nonstationarity »
Xiangchen Song · Weiran Yao · Yewen Fan · Xinshuai Dong · Guangyi Chen · Juan Carlos Niebles · Eric Xing · Kun Zhang -
2023 Poster: Identification of Nonlinear Latent Hierarchical Models »
Lingjing Kong · Biwei Huang · Feng Xie · Eric Xing · Yuejie Chi · Kun Zhang -
2023 Oral: Generalizing Nonlinear ICA Beyond Structural Sparsity »
Yujia Zheng · Kun Zhang -
2023 Poster: Learning World Models with Identifiable Factorization »
Yuren Liu · Biwei Huang · Zhengmao Zhu · Honglong Tian · Mingming Gong · Yang Yu · Kun Zhang -
2022 Spotlight: Latent Hierarchical Causal Structure Discovery with Rank Constraints »
Biwei Huang · Charles Jia Han Low · Feng Xie · Clark Glymour · Kun Zhang -
2022 : Kun Zhang: Causal Principles Meet Deep Learning: Successes and Challenges. »
Kun Zhang -
2022 : Kun Zhang: Causal Principles Meet Deep Learning: Successes and Challenges. »
Kun Zhang -
2022 Workshop: Causal Machine Learning for Real-World Impact »
Nick Pawlowski · Jeroen Berrevoets · Caroline Uhler · Kun Zhang · Mihaela van der Schaar · Cheng Zhang -
2022 Poster: On the Identifiability of Nonlinear ICA: Sparsity and Beyond »
Yujia Zheng · Ignavier Ng · Kun Zhang -
2022 Poster: Independence Testing-Based Approach to Causal Discovery under Measurement Error and Linear Non-Gaussian Models »
Haoyue Dai · Peter Spirtes · Kun Zhang -
2022 Poster: Latent Hierarchical Causal Structure Discovery with Rank Constraints »
Biwei Huang · Charles Jia Han Low · Feng Xie · Clark Glymour · Kun Zhang -
2022 Poster: MissDAG: Causal Discovery in the Presence of Missing Data with Continuous Additive Noise Models »
Erdun Gao · Ignavier Ng · Mingming Gong · Li Shen · Wei Huang · Tongliang Liu · Kun Zhang · Howard Bondell -
2022 Poster: Causal Discovery in Linear Latent Variable Models Subject to Measurement Error »
Yuqin Yang · AmirEmad Ghassami · Mohamed Nafea · Negar Kiyavash · Kun Zhang · Ilya Shpitser -
2022 Poster: Unsupervised Image-to-Image Translation with Density Changing Regularization »
Shaoan Xie · Qirong Ho · Kun Zhang -
2022 Poster: Factored Adaptation for Non-Stationary Reinforcement Learning »
Fan Feng · Biwei Huang · Kun Zhang · Sara Magliacane -
2022 Poster: Counterfactual Fairness with Partially Known Causal Graph »
Aoqi Zuo · Susan Wei · Tongliang Liu · Bo Han · Kun Zhang · Mingming Gong -
2022 Poster: Temporally Disentangled Representation Learning »
Weiran Yao · Guangyi Chen · Kun Zhang -
2022 Poster: Truncated Matrix Power Iteration for Differentiable DAG Learning »
Zhen Zhang · Ignavier Ng · Dong Gong · Yuhang Liu · Ehsan Abbasnejad · Mingming Gong · Kun Zhang · Javen Qinfeng Shi -
2021 Poster: SADGA: Structure-Aware Dual Graph Aggregation Network for Text-to-SQL »
Ruichu Cai · Jinjie Yuan · Boyan Xu · Zhifeng Hao -
2021 Poster: Domain Adaptation with Invariant Representation Learning: What Transformations to Learn? »
Petar Stojanov · Zijian Li · Mingming Gong · Ruichu Cai · Jaime Carbonell · Kun Zhang -
2020 Workshop: Causal Discovery and Causality-Inspired Machine Learning »
Biwei Huang · Sara Magliacane · Kun Zhang · Danielle Belgrave · Elias Bareinboim · Daniel Malinsky · Thomas Richardson · Christopher Meek · Peter Spirtes · Bernhard Schölkopf -
2020 Poster: Generalized Independent Noise Condition for Estimating Latent Variable Causal Graphs »
Feng Xie · Ruichu Cai · Biwei Huang · Clark Glymour · Zhifeng Hao · Kun Zhang -
2020 Spotlight: Generalized Independent Noise Condition for Estimating Latent Variable Causal Graphs »
Feng Xie · Ruichu Cai · Biwei Huang · Clark Glymour · Zhifeng Hao · Kun Zhang -
2019 Poster: Triad Constraints for Learning Causal Structure of Latent Variables »
Ruichu Cai · Feng Xie · Clark Glymour · Zhifeng Hao · Kun Zhang -
2018 Poster: Causal Discovery from Discrete Data using Hidden Compact Representation »
Ruichu Cai · Jie Qiao · Kun Zhang · Zhenjie Zhang · Zhifeng Hao -
2017 Poster: Learning Causal Structures Using Regression Invariance »
AmirEmad Ghassami · Saber Salehkaleybar · Negar Kiyavash · Kun Zhang