Timezone: »
Given a set of calibrated images of a scene, we present an approach that produces a simple, compact, and actionable 3D world representation by means of 3D primitives. While many approaches focus on recovering high-fidelity 3D scenes, we focus on parsing a scene into mid-level 3D representations made of a small set of textured primitives. Such representations are interpretable, easy to manipulate and suited for physics-based simulations. Moreover, unlike existing primitive decomposition methods that rely on 3D input data, our approach operates directly on images through differentiable rendering. Specifically, we model primitives as textured superquadric meshes and optimize their parameters from scratch with an image rendering loss. We highlight the importance of modeling transparency for each primitive, which is critical for optimization and also enables handling varying numbers of primitives. We show that the resulting textured primitives faithfully reconstruct the input images and accurately model the visible 3D points, while providing amodal shape completions of unseen object regions. We compare our approach to the state of the art on diverse scenes from DTU, and demonstrate its robustness on real-life captures from BlendedMVS and Nerfstudio. We also showcase how our results can be used to effortlessly edit a scene or perform physical simulations. Code and video results are available at https://www.tmonnier.com/DBW.
Author Information
Tom Monnier (Meta)
Jake Austin
Angjoo Kanazawa (University of California, Berkeley)
Alexei Efros (UC Berkeley)
Mathieu Aubry (École des ponts ParisTech)
More from the Same Authors
-
2021 : Spherical Perspective on Learning with Normalization Layers »
Simon Roburin · Yann de Mont-Marin · Andrei Bursuc · Renaud Marlet · Patrick Pérez · Mathieu Aubry -
2021 : Spherical Perspective on Learning with Normalization Layers »
Simon Roburin · Yann de Mont-Marin · Andrei Bursuc · Renaud Marlet · Patrick Pérez · Mathieu Aubry -
2022 : Studying Bias in GANs through the Lens of Race »
Vongani Maluleke · Neerja Thakkar · Tim Brooks · Ethan Weber · Trevor Darrell · Alexei Efros · Angjoo Kanazawa · Devin Guillory -
2023 Poster: Diffusion Self-Guidance for Controllable Image Generation »
Dave Epstein · Allan Jabri · Ben Poole · Alexei Efros · Aleksander Holynski -
2022 Poster: Test-Time Training with Masked Autoencoders »
Yossi Gandelsman · Yu Sun · Xinlei Chen · Alexei Efros -
2022 Poster: Visual Prompting via Image Inpainting »
Amir Bar · Yossi Gandelsman · Trevor Darrell · Amir Globerson · Alexei Efros -
2022 Poster: Generating Long Videos of Dynamic Scenes »
Tim Brooks · Janne Hellsten · Miika Aittala · Ting-Chun Wang · Timo Aila · Jaakko Lehtinen · Ming-Yu Liu · Alexei Efros · Tero Karras -
2022 Poster: Monocular Dynamic View Synthesis: A Reality Check »
Hang Gao · Ruilong Li · Shubham Tulsiani · Bryan Russell · Angjoo Kanazawa -
2021 Poster: Re-ranking for image retrieval and transductive few-shot classification »
Xi SHEN · Yang Xiao · Shell Xu Hu · Othman Sbai · Mathieu Aubry -
2021 Poster: MarioNette: Self-Supervised Sprite Learning »
Dmitriy Smirnov · MICHAEL GHARBI · Matthew Fisher · Vitor Guizilini · Alexei Efros · Justin Solomon -
2020 : Panel Discussion & Closing »
Yejin Choi · Alexei Efros · Chelsea Finn · Kristen Grauman · Quoc V Le · Yann LeCun · Ruslan Salakhutdinov · Eric Xing -
2020 : QA: Alexei Efros »
Alexei Efros -
2020 : Invited Talk: Alexei Efros »
Alexei Efros -
2020 Poster: Space-Time Correspondence as a Contrastive Random Walk »
Allan Jabri · Andrew Owens · Alexei Efros -
2020 Oral: Space-Time Correspondence as a Contrastive Random Walk »
Allan Jabri · Andrew Owens · Alexei Efros -
2020 Poster: Deep Transformation-Invariant Clustering »
Tom Monnier · Thibault Groueix · Mathieu Aubry -
2020 Oral: Deep Transformation-Invariant Clustering »
Tom Monnier · Thibault Groueix · Mathieu Aubry -
2020 Poster: Swapping Autoencoder for Deep Image Manipulation »
Taesung Park · Jun-Yan Zhu · Oliver Wang · Jingwan Lu · Eli Shechtman · Alexei Efros · Richard Zhang -
2019 : Poster Presentations »
Rahul Mehta · Andrew Lampinen · Binghong Chen · Sergio Pascual-Diaz · Jordi Grau-Moya · Aldo Faisal · Jonathan Tompson · Yiren Lu · Khimya Khetarpal · Martin Klissarov · Pierre-Luc Bacon · Doina Precup · Thanard Kurutach · Aviv Tamar · Pieter Abbeel · Jinke He · Maximilian Igl · Shimon Whiteson · Wendelin Boehmer · Raphaël Marinier · Olivier Pietquin · Karol Hausman · Sergey Levine · Chelsea Finn · Tianhe Yu · Lisa Lee · Benjamin Eysenbach · Emilio Parisotto · Eric Xing · Ruslan Salakhutdinov · Hongyu Ren · Anima Anandkumar · Deepak Pathak · Christopher Lu · Trevor Darrell · Alexei Efros · Phillip Isola · Feng Liu · Bo Han · Gang Niu · Masashi Sugiyama · Saurabh Kumar · Janith Petangoda · Johan Ferret · James McClelland · Kara Liu · Animesh Garg · Robert Lange -
2019 : Oral Presentations »
Janith Petangoda · Sergio Pascual-Diaz · Jordi Grau-Moya · Raphaël Marinier · Olivier Pietquin · Alexei Efros · Phillip Isola · Trevor Darrell · Christopher Lu · Deepak Pathak · Johan Ferret -
2019 Poster: Learning elementary structures for 3D shape generation and matching »
Theo Deprelle · Thibault Groueix · Matthew Fisher · Vladimir Kim · Bryan Russell · Mathieu Aubry -
2019 Poster: Learning to Control Self-Assembling Morphologies: A Study of Generalization via Modularity »
Deepak Pathak · Christopher Lu · Trevor Darrell · Phillip Isola · Alexei Efros -
2019 Spotlight: Learning to Control Self-Assembling Morphologies: A Study of Generalization via Modularity »
Deepak Pathak · Christopher Lu · Trevor Darrell · Phillip Isola · Alexei Efros -
2017 : How to stop worrying and learn to love Nearest Neighbors »
Alexei Efros -
2017 Poster: Toward Multimodal Image-to-Image Translation »
Jun-Yan Zhu · Richard Zhang · Deepak Pathak · Trevor Darrell · Alexei Efros · Oliver Wang · Eli Shechtman -
2016 : What makes ImageNet good for Transfer Learning? »
Jacob MY Huh · Pulkit Agrawal · Alexei Efros