Timezone: »
Earth system forecasting has traditionally relied on complex physical models that are computationally expensive and require significant domain expertise.In the past decade, the unprecedented increase in spatiotemporal Earth observation data has enabled data-driven forecasting models using deep learning techniques.These models have shown promise for diverse Earth system forecasting tasks but either struggle with handling uncertainty or neglect domain-specific prior knowledge, resulting in averaging possible futures to blurred forecasts or generating physically implausible predictions.To address these limitations, we propose a two-stage pipeline for probabilistic spatiotemporal forecasting: 1) We develop PreDiff, a conditional latent diffusion model capable of probabilistic forecasts. 2) We incorporate an explicit knowledge alignment mechanism to align forecasts with domain-specific physical constraints. This is achieved by estimating the deviation from imposed constraints at each denoising step and adjusting the transition distribution accordingly.We conduct empirical studies on two datasets: N-body MNIST, a synthetic dataset with chaotic behavior, and SEVIR, a real-world precipitation nowcasting dataset. Specifically, we impose the law of conservation of energy in N-body MNIST and anticipated precipitation intensity in SEVIR. Experiments demonstrate the effectiveness of PreDiff in handling uncertainty, incorporating domain-specific prior knowledge, and generating forecasts that exhibit high operational utility.
Author Information
Zhihan Gao (HKUST)
Xingjian Shi (HKUST)
Boran Han (Shell)
Hao Wang (Department of Computer Science, Rutgers University)
Xiaoyong Jin (Amazon)
Danielle Maddix (Amazon Web Services)
Yi Zhu (Boson AI)
Mu Li (Amazon)
Yuyang (Bernie) Wang (AWS AI Labs)
More from the Same Authors
-
2021 : Benchmarking Multimodal AutoML for Tabular Data with Text Fields »
Xingjian Shi · Jonas Mueller · Nick Erickson · Mu Li · Alexander Smola -
2021 : Modeling Advection on Directed Graphs using Mat\'{e}rn Gaussian Processes for Traffic Flow »
Nadim Saad · Danielle Maddix · Bernie Wang -
2022 : First De-Trend then Attend: Rethinking Attention for Time-Series Forecasting »
Xiyuan Zhang · Xiaoyong Jin · Karthick Gopalswamy · Gaurav Gupta · Youngsuk Park · Xingjian Shi · Hao Wang · Danielle Maddix · Yuyang (Bernie) Wang -
2022 : Towards Reverse Causal Inference on Panel Data: Precise Formulation and Challenges »
Jiayao Zhang · Youngsuk Park · Danielle Maddix · Dan Roth · Yuyang (Bernie) Wang -
2022 : Benchmarking Robustness under Distribution Shift of Multimodal Image-Text Models »
Jielin Qiu · Yi Zhu · Xingjian Shi · Zhiqiang Tang · DING ZHAO · Bo Li · Mu Li -
2022 : But Are You Sure? Quantifying Uncertainty in Model Explanations »
Charlie Marx · Youngsuk Park · Hilaf Hasson · Yuyang (Bernie) Wang · Stefano Ermon · Chaitanya Baru -
2023 : PreDiff: Precipitation Nowcasting with Latent Diffusion Models »
Zhihan Gao · Xingjian Shi · Boran Han · Hao Wang · Xiaoyong Jin · Danielle Maddix · Yi Zhu · Mu Li · Yuyang (Bernie) Wang -
2023 : LatticeGen: A Cooperative Framework Which Hides Generated Text in A Lattice For Privacy-Aware Generation on Cloud »
Zhang · Tianxing He · Tianle Wang · Lu Mi · Niloofar Mireshghallah · Binyi Chen · Hao Wang · Yulia Tsvetkov -
2023 Poster: Predict, Refine, Synthesize: Self-Guiding Diffusion Models for Probabilistic Time Series Forecasting »
Marcel Kollovieh · Abdul Fatir Ansari · Michael Bohlke-Schneider · Jasper Zschiegner · Hao Wang · Yuyang (Bernie) Wang -
2023 Poster: Prompt Pre-Training with Twenty-Thousand Classes for Open-Vocabulary Visual Recognition »
Shuhuai Ren · Aston Zhang · Yi Zhu · Shuai Zhang · Shuai Zheng · Mu Li · Alexander Smola · Xu Sun -
2023 Poster: A Unified Approach to Domain Incremental Learning with Memory: Theory and Algorithm »
Haizhou Shi · Hao Wang -
2023 Poster: Variational Imbalanced Regression: Fair Uncertainty Quantification via Probabilistic Smoothing »
Ziyan Wang · Hao Wang -
2022 Spotlight: Lightning Talks 4A-3 »
Zhihan Gao · Yabin Wang · Xingyu Qu · Luziwei Leng · Mingqing Xiao · Bohan Wang · Yu Shen · Zhiwu Huang · Xingjian Shi · Qi Meng · Yupeng Lu · Diyang Li · Qingyan Meng · Kaiwei Che · Yang Li · Hao Wang · Huishuai Zhang · Zongpeng Zhang · Kaixuan Zhang · Xiaopeng Hong · Xiaohan Zhao · Di He · Jianguo Zhang · Yaofeng Tu · Bin Gu · Yi Zhu · Ruoyu Sun · Yuyang (Bernie) Wang · Zhouchen Lin · Qinghu Meng · Wei Chen · Wentao Zhang · Bin CUI · Jie Cheng · Zhi-Ming Ma · Mu Li · Qinghai Guo · Dit-Yan Yeung · Tie-Yan Liu · Jianxing Liao -
2022 Spotlight: Earthformer: Exploring Space-Time Transformers for Earth System Forecasting »
Zhihan Gao · Xingjian Shi · Hao Wang · Yi Zhu · Yuyang (Bernie) Wang · Mu Li · Dit-Yan Yeung -
2022 Workshop: A causal view on dynamical systems »
Sören Becker · Alexis Bellot · Cecilia Casolo · Niki Kilbertus · Sara Magliacane · Yuyang (Bernie) Wang -
2022 Poster: Extrapolative Continuous-time Bayesian Neural Network for Fast Training-free Test-time Adaptation »
Hengguan Huang · Xiangming Gu · Hao Wang · Chang Xiao · Hongfu Liu · Ye Wang -
2022 Poster: On the detrimental effect of invariances in the likelihood for variational inference »
Richard Kurle · Ralf Herbrich · Tim Januschowski · Yuyang (Bernie) Wang · Jan Gasthaus -
2022 Poster: Earthformer: Exploring Space-Time Transformers for Earth System Forecasting »
Zhihan Gao · Xingjian Shi · Hao Wang · Yi Zhu · Yuyang (Bernie) Wang · Mu Li · Dit-Yan Yeung -
2021 Poster: Blending Anti-Aliasing into Vision Transformer »
Shengju Qian · Hao Shao · Yi Zhu · Mu Li · Jiaya Jia -
2021 Poster: Progressive Coordinate Transforms for Monocular 3D Object Detection »
Li Wang · Li Zhang · Yi Zhu · Zhi Zhang · Tong He · Mu Li · Xiangyang Xue -
2020 Poster: CSER: Communication-efficient SGD with Error Reset »
Cong Xie · Shuai Zheng · Sanmi Koyejo · Indranil Gupta · Mu Li · Haibin Lin -
2018 : Poster Session 1 »
Stefan Gadatsch · Danil Kuzin · Navneet Kumar · Patrick Dallaire · Tom Ryder · Remus-Petru Pop · Nathan Hunt · Adam Kortylewski · Sophie Burkhardt · Mahmoud Elnaggar · Dieterich Lawson · Yifeng Li · Jongha (Jon) Ryu · Juhan Bae · Micha Livne · Tim Pearce · Mariia Vladimirova · Jason Ramapuram · Jiaming Zeng · Xinyu Hu · Jiawei He · Danielle Maddix · Arunesh Mittal · Albert Shaw · Tuan Anh Le · Alexander Sagel · Lisha Chen · Victor Gallego · Mahdi Karami · Zihao Zhang · Tal Kachman · Noah Weber · Matt Benatan · Kumar K Sricharan · Vincent Cartillier · Ivan Ovinnikov · Buu Phan · Mahmoud Hossam · Liu Ziyin · Valerii Kharitonov · Eugene Golikov · Qiang Zhang · Jae Myung Kim · Sebastian Farquhar · Jishnu Mukhoti · Xu Hu · Gregory Gundersen · Lavanya Sita Tekumalla · Paris Perdikaris · Ershad Banijamali · Siddhartha Jain · Ge Liu · Martin Gottwald · Katy Blumer · Sukmin Yun · Ranganath Krishnan · Roman Novak · Yilun Du · Yu Gong · Beliz Gokkaya · Jessica Ai · Daniel Duckworth · Johannes von Oswald · Christian Henning · Louis-Philippe Morency · Ali Ghodsi · Mahesh Subedar · Jean-Pascal Pfister · Rémi Lebret · Chao Ma · Aleksander Wieczorek · Laurence Perreault Levasseur -
2017 Poster: Deep Learning for Precipitation Nowcasting: A Benchmark and A New Model »
Xingjian Shi · Zhihan Gao · Leonard Lausen · Hao Wang · Dit-Yan Yeung · Wai-kin Wong · Wang-chun WOO -
2017 Spotlight: Deep Learning for Precipitation Nowcasting: A Benchmark and A New Model »
Xingjian Shi · Zhihan Gao · Leonard Lausen · Hao Wang · Dit-Yan Yeung · Wai-kin Wong · Wang-chun WOO