Timezone: »
Poster
An $\varepsilon$-Best-Arm Identification Algorithm for Fixed-Confidence and Beyond
Marc Jourdan · Rémy Degenne · Emilie Kaufmann
We propose EB-TC$\varepsilon$, a novel sampling rule for $\varepsilon$-best arm identification in stochastic bandits.It is the first instance of Top Two algorithm analyzed for approximate best arm identification. EB-TC$\varepsilon$ is an *anytime* sampling rule that can therefore be employed without modification for fixed confidence or fixed budget identification (without prior knowledge of the budget).We provide three types of theoretical guarantees for EB-TC$\varepsilon$.First, we prove bounds on its expected sample complexity in the fixed confidence setting, notably showing its asymptotic optimality in combination with an adaptive tuning of its exploration parameter.We complement these findings with upper bounds on its probability of error at any time and for any slack parameter, which further yield upper bounds on its simple regret at any time.Finally, we show through numerical simulations that EB-TC$\varepsilon$ performs favorably compared to existing algorithms for different approximate best arm identification tasks.
Author Information
Marc Jourdan (INRIA)
Rémy Degenne (Inria)
Emilie Kaufmann (CNRS)
More from the Same Authors
-
2023 Poster: Adaptive Algorithms for Relaxed Pareto Set Identification »
Cyrille KONE · Emilie Kaufmann · Laura Richert -
2023 Poster: On the Complexity of Differentially Private Best-Arm Identification with Fixed Confidence »
Achraf Azize · Marc Jourdan · Aymen Al Marjani · Debabrota Basu -
2023 Poster: Non-Asymptotic Analysis of a UCB-based Top Two Algorithm »
Marc Jourdan · Rémy Degenne -
2023 Poster: Fast Asymptotically Optimal Algorithms for Non-Parametric Stochastic Bandits »
Dorian Baudry · Fabien Pesquerel · Rémy Degenne · Odalric-Ambrym Maillard -
2022 Poster: Top Two Algorithms Revisited »
Marc Jourdan · Rémy Degenne · Dorian Baudry · Rianne de Heide · Emilie Kaufmann -
2022 Poster: Near Instance-Optimal PAC Reinforcement Learning for Deterministic MDPs »
Andrea Tirinzoni · Aymen Al Marjani · Emilie Kaufmann -
2022 Poster: On Elimination Strategies for Bandit Fixed-Confidence Identification »
Andrea Tirinzoni · Rémy Degenne -
2022 Poster: Near-Optimal Collaborative Learning in Bandits »
Clémence Réda · Sattar Vakili · Emilie Kaufmann -
2022 Poster: Efficient Change-Point Detection for Tackling Piecewise-Stationary Bandits »
Lilian Besson · Emilie Kaufmann · Odalric-Ambrym Maillard · Julien Seznec -
2020 Poster: Sub-sampling for Efficient Non-Parametric Bandit Exploration »
Dorian Baudry · Emilie Kaufmann · Odalric-Ambrym Maillard -
2020 Spotlight: Sub-sampling for Efficient Non-Parametric Bandit Exploration »
Dorian Baudry · Emilie Kaufmann · Odalric-Ambrym Maillard -
2020 Poster: Planning in Markov Decision Processes with Gap-Dependent Sample Complexity »
Anders Jonsson · Emilie Kaufmann · Pierre Menard · Omar Darwiche Domingues · Edouard Leurent · Michal Valko -
2019 Poster: Pure Exploration with Multiple Correct Answers »
Rémy Degenne · Wouter Koolen -
2019 Poster: Non-Asymptotic Pure Exploration by Solving Games »
Rémy Degenne · Wouter Koolen · Pierre Ménard -
2016 Poster: Combinatorial semi-bandit with known covariance »
Rémy Degenne · Vianney Perchet