Timezone: »
Poster
Importance-aware Co-teaching for Offline Model-based Optimization
Ye Yuan · Can Chen · Zixuan Liu · Willie Neiswanger · Xue (Steve) Liu
Offline model-based optimization aims to find a design that maximizes a property of interest using only an offline dataset, with applications in robot, protein, and molecule design, among others. A prevalent approach is gradient ascent, where a proxy model is trained on the offline dataset and then used to optimize the design. This method suffers from an out-of-distribution issue, where the proxy is not accurate for unseen designs. To mitigate this issue, we explore using a pseudo-labeler to generate valuable data for fine-tuning the proxy. Specifically, we propose $\textit{\textbf{I}mportance-aware \textbf{C}o-\textbf{T}eaching for Offline Model-based Optimization}~(\textbf{ICT})$. This method maintains three symmetric proxies with their mean ensemble as the final proxy, and comprises two steps. The first step is $\textit{pseudo-label-driven co-teaching}$. In this step, one proxy is iteratively selected as the pseudo-labeler for designs near the current optimization point, generating pseudo-labeled data. Subsequently, a co-teaching process identifies small-loss samples as valuable data and exchanges them between the other two proxies for fine-tuning, promoting knowledge transfer. This procedure is repeated three times, with a different proxy chosen as the pseudo-labeler each time, ultimately enhancing the ensemble performance.To further improve accuracy of pseudo-labels, we perform a secondary step of $\textit{meta-learning-based sample reweighting}$,which assigns importance weights to samples in the pseudo-labeled dataset and updates them via meta-learning. ICT achieves state-of-the-art results across multiple design-bench tasks, achieving the best mean rank $3.1$ and median rank $2$ among $15$ methods.Our source code can be accessed here.
Author Information
Ye Yuan (McGill University)
Hello, This is Ye (Steven) Yuan, a first-year Ph.D. student from McGill University's CPS Lab. I am fortunate to be supervised by Professor Xue (Steve) Liu. I also obtained my Bachelor of Science degree in Honours Computer Science from McGill University as well. My research interests are in generative models and meta-learning. Please feel free to contact me if you are interested in collaborating with me.
Can Chen (Mila - Quebec AI Institute)
Zixuan Liu (University of Washington)
Willie Neiswanger (Stanford / USC)
Xue (Steve) Liu (McGill University)
More from the Same Authors
-
2021 : Personalized Benchmarking with the Ludwig Benchmarking Toolkit »
Avanika Narayan · Piero Molino · Karan Goel · Willie Neiswanger · Christopher Ré -
2021 : Synthetic Benchmarks for Scientific Research in Explainable Machine Learning »
Yang Liu · Sujay Khandagale · Colin White · Willie Neiswanger -
2021 : Calculus of Consent via MARL: Legitimating the Collaborative Governance Supplying Public Goods »
Yang Hu · Zhui Zhu · Sirui Song · Xue (Steve) Liu · Yang Yu -
2022 : Precise Augmentation and Counting of Helicobacter Pylori in Histology Image »
Yufei CUI · Yixin Chen · Zhifeng Shuai · Fang Peng · Yanbo Lv · Luoning Zheng · Xue (Steve) Liu · Antoni Chan · Tei-Wei Kuo · Chun Jason XUE -
2022 : Betty: An Automatic Differentiation Library for Multilevel Optimization »
Sang Choe · Willie Neiswanger · Pengtao Xie · Eric Xing -
2023 : Correlated Trajectory Uncertainty for Adaptive Sequential Decision Making »
Ian Char · Youngseog Chung · Rohan Shah · Willie Neiswanger · Jeff Schneider -
2023 : Improving Natural Language Understanding with Computation-Efficient Retrieval Representation Fusion »
Shangyu Wu · Ying Xiong · Yufei CUI · Xue (Steve) Liu · Buzhou Tang · Tei-Wei Kuo · Chun Jason XUE -
2023 Workshop: Adaptive Experimental Design and Active Learning in the Real World »
Willie Neiswanger · Mojmir Mutny · Ilija Bogunovic · Ava Amini · Zi Wang · Stefano Ermon · Andreas Krause -
2023 Poster: Towards Hybrid-grained Feature Interaction Selection for Deep Sparse Network »
Fuyuan Lyu · Xing Tang · Dugang Liu · Chen Ma · Weihong Luo · Liang Chen · xiuqiang He · Xue (Steve) Liu -
2023 Poster: Parallel-mentoring for Offline Model-based Optimization »
Can Chen · Christopher Beckham · Zixuan Liu · Xue (Steve) Liu · Chris Pal -
2023 Poster: Retrieval-Augmented Multiple Instance Learning »
Yufei CUI · Ziquan Liu · Yixin Chen · Yuchen Lu · Xinyue Yu · Xue (Steve) Liu · Tei-Wei Kuo · Miguel Rodrigues · Chun Jason XUE · Antoni Chan -
2023 Poster: Making Scalable Meta Learning Practical »
Sang Choe · Sanket Vaibhav Mehta · Hwijeen Ahn · Willie Neiswanger · Pengtao Xie · Emma Strubell · Eric Xing -
2022 : Invited Talk: Willie Neiswanger »
Willie Neiswanger -
2022 Poster: Bidirectional Learning for Offline Infinite-width Model-based Optimization »
Can Chen · Yingxueff Zhang · Jie Fu · Xue (Steve) Liu · Mark Coates -
2022 Poster: Generalizing Bayesian Optimization with Decision-theoretic Entropies »
Willie Neiswanger · Lantao Yu · Shengjia Zhao · Chenlin Meng · Stefano Ermon -
2022 Poster: Exploration via Planning for Information about the Optimal Trajectory »
Viraj Mehta · Ian Char · Joseph Abbate · Rory Conlin · Mark Boyer · Stefano Ermon · Jeff Schneider · Willie Neiswanger -
2021 Poster: Beyond Pinball Loss: Quantile Methods for Calibrated Uncertainty Quantification »
Youngseog Chung · Willie Neiswanger · Ian Char · Jeff Schneider -
2021 Poster: Generalized DataWeighting via Class-Level Gradient Manipulation »
Can Chen · Shuhao Zheng · Xi Chen · Erqun Dong · Xue (Steve) Liu · Hao Liu · Dejing Dou -
2019 : Morning Coffee Break & Poster Session »
Eric Metodiev · Keming Zhang · Markus Stoye · Randy Churchill · Soumalya Sarkar · Miles Cranmer · Johann Brehmer · Danilo Jimenez Rezende · Peter Harrington · AkshatKumar Nigam · Nils Thuerey · Lukasz Maziarka · Alvaro Sanchez Gonzalez · Atakan Okan · James Ritchie · N. Benjamin Erichson · Harvey Cheng · Peihong Jiang · Seong Ho Pahng · Samson Koelle · Sami Khairy · Adrian Pol · Rushil Anirudh · Jannis Born · Benjamin Sanchez-Lengeling · Brian Timar · Rhys Goodall · Tamás Kriváchy · Lu Lu · Thomas Adler · Nathaniel Trask · Noëlie Cherrier · Tomohiko Konno · Muhammad Kasim · Tobias Golling · Zaccary Alperstein · Andrei Ustyuzhanin · James Stokes · Anna Golubeva · Ian Char · Ksenia Korovina · Youngwoo Cho · Chanchal Chatterjee · Tom Westerhout · Gorka Muñoz-Gil · Juan Zamudio-Fernandez · Jennifer Wei · Brian Lee · Johannes Kofler · Bruce Power · Nikita Kazeev · Andrey Ustyuzhanin · Artem Maevskiy · Pascal Friederich · Arash Tavakoli · Willie Neiswanger · Bohdan Kulchytskyy · sindhu hari · Paul Leu · Paul Atzberger -
2019 Poster: Offline Contextual Bayesian Optimization »
Ian Char · Youngseog Chung · Willie Neiswanger · Kirthevasan Kandasamy · Oak Nelson · Mark Boyer · Egemen Kolemen · Jeff Schneider -
2018 Poster: Neural Architecture Search with Bayesian Optimisation and Optimal Transport »
Kirthevasan Kandasamy · Willie Neiswanger · Jeff Schneider · Barnabas Poczos · Eric Xing -
2018 Spotlight: Neural Architecture Search with Bayesian Optimisation and Optimal Transport »
Kirthevasan Kandasamy · Willie Neiswanger · Jeff Schneider · Barnabas Poczos · Eric Xing