Timezone: »
Spotlight Poster
Full-Atom Protein Pocket Design via Iterative Refinement
ZAIXI ZHANG · Zepu Lu · Hao Zhongkai · Marinka Zitnik · Qi Liu
Event URL: https://arxiv.org/abs/2310.02553 »
The design of \emph{de novo} functional proteins that bind with specific ligand molecules is crucial in various domains like therapeutics and bio-engineering. One vital yet challenging step is to design the protein pocket, the cavity region of protein where the ligand binds with. Existing methods suffer from inefficient generation, insufficient context modeling (ligand molecule), and incapability of generating sidechain atoms. To overcome the limitations, we propose a \textbf{F}ull-\textbf{A}tom \textbf{I}terative \textbf{R}efinement framework (\textbf{FAIR}) for protein pocket sequence (i.e., residue types) and 3D structure co-design. Generally, FAIR consists of two steps that follow a coarse-to-fine pipeline (backbone atoms to full atoms including sidechain) for full-atom generation. For efficiency, all residue types and structures are updated together in each round (i.e., full-shot refinement). In the first step, the residue types and backbone coordinates are updated with a hierarchical context encoder and two structure refinement modules capturing inter-residue and pocket-ligand interactions. The second step further models the sidechain atoms of pockets and updates residue types to achieve sequence-structure consistency. The structure of the binding ligand is also updated along with the above refinement iterations accounting for its flexibility. Finally, extensive evaluations showthat FAIR outperforms baselines in efficiently designing high-quality pocket sequences and structures. Specifically, the average improvements on AAR and RMSD are over 10$\%$.
The design of \emph{de novo} functional proteins that bind with specific ligand molecules is crucial in various domains like therapeutics and bio-engineering. One vital yet challenging step is to design the protein pocket, the cavity region of protein where the ligand binds with. Existing methods suffer from inefficient generation, insufficient context modeling (ligand molecule), and incapability of generating sidechain atoms. To overcome the limitations, we propose a \textbf{F}ull-\textbf{A}tom \textbf{I}terative \textbf{R}efinement framework (\textbf{FAIR}) for protein pocket sequence (i.e., residue types) and 3D structure co-design. Generally, FAIR consists of two steps that follow a coarse-to-fine pipeline (backbone atoms to full atoms including sidechain) for full-atom generation. For efficiency, all residue types and structures are updated together in each round (i.e., full-shot refinement). In the first step, the residue types and backbone coordinates are updated with a hierarchical context encoder and two structure refinement modules capturing inter-residue and pocket-ligand interactions. The second step further models the sidechain atoms of pockets and updates residue types to achieve sequence-structure consistency. The structure of the binding ligand is also updated along with the above refinement iterations accounting for its flexibility. Finally, extensive evaluations showthat FAIR outperforms baselines in efficiently designing high-quality pocket sequences and structures. Specifically, the average improvements on AAR and RMSD are over 10$\%$.
Author Information
ZAIXI ZHANG (University of Science and Technology of China)
Zepu Lu (University of Science and Technology of China)
Hao Zhongkai (USTC)
Marinka Zitnik (Harvard University)
Qi Liu (" University of Science and Technology of China, China")
More from the Same Authors
-
2022 Poster: A Unified Hard-Constraint Framework for Solving Geometrically Complex PDEs »
Songming Liu · Hao Zhongkai · Chengyang Ying · Hang Su · Jun Zhu · Ze Cheng -
2022 Poster: DARE: Disentanglement-Augmented Rationale Extraction »
Linan Yue · Qi Liu · Yichao Du · Yanqing An · Li Wang · Enhong Chen -
2022 Poster: Hierarchical Graph Transformer with Adaptive Node Sampling »
ZAIXI ZHANG · Qi Liu · Qingyong Hu · Chee-Kong Lee -
2022 : Structure-Inducing Pre-training »
Matthew McDermott · Brendan Yap · Peter Szolovits · Marinka Zitnik -
2023 : Mapping the intermolecular interaction universe through self-supervised learning on molecular crystals »
Ada Fang · Ada Fang · ZAIXI ZHANG · Marinka Zitnik · Marinka Zitnik -
2023 : What Improves the Generalization of Graph Transformer? A Theoretical Dive into Self-attention and Positional Encoding »
Hongkang Li · Meng Wang · Tengfei Ma · Sijia Liu · ZAIXI ZHANG · Pin-Yu Chen -
2023 : Keynote: Marinka Zitnik »
Marinka Zitnik -
2023 Workshop: AI for Science: from Theory to Practice »
Yuanqi Du · Max Welling · Yoshua Bengio · Marinka Zitnik · Carla Gomes · Jure Leskovec · Maria Brbic · Wenhao Gao · Kexin Huang · Ziming Liu · RocĂo Mercado · Miles Cranmer · Shengchao Liu · Lijing Wang -
2023 Poster: Encoding Time-Series Explanations through Self-Supervised Model Behavior Consistency »
Owen Queen · Tom Hartvigsen · Teddy Koker · Huan He · Theodoros Tsiligkaridis · Marinka Zitnik -
2023 Poster: FairLISA: Fair User Modeling with Limited Sensitive Attributes Information »
zheng zhang · Qi Liu · Hao Jiang · Fei Wang · Yan Zhuang · Le Wu · Weibo Gao · Enhong Chen -
2023 Poster: A Bounded Ability Estimation for Computerized Adaptive Testing »
Yan Zhuang · Qi Liu · Guanhao Zhao · Zhenya Huang · Weizhe Huang · Zachary Pardos · Enhong Chen · Jinze Wu · Xin Li -
2023 Poster: Knowledge Distillation for High Dimensional Search Index »
Zepu Lu · Jin Chen · Defu Lian · ZAIXI ZHANG · Yong Ge · Enhong Chen -
2023 Poster: Adaptive Normalization for Non-stationary Time Series Forecasting: A Temporal Slice Perspective »
Zhiding Liu · Mingyue Cheng · Zhi Li · Zhenya Huang · Qi Liu · Yanhu Xie · Enhong Chen -
2023 Poster: AdaptSSR: Pre-training User Model with Augmentation-Adaptive Self-Supervised Ranking »
Yang Yu · Qi Liu · Kai Zhang · Yuren Zhang · Chao Song · Min Hou · Yuqing Yuan · Zhihao Ye · ZAIXI ZHANG · Sanshi Lei Yu -
2022 : Keynote »
Marinka Zitnik -
2022 Spotlight: Lightning Talks 6A-2 »
Yichuan Mo · Botao Yu · Gang Li · Zezhong Xu · Haoran Wei · Arsene Fansi Tchango · Raef Bassily · Haoyu Lu · Qi Zhang · Songming Liu · Mingyu Ding · Peiling Lu · Yifei Wang · Xiang Li · Dongxian Wu · Ping Guo · Wen Zhang · Hao Zhongkai · Mehryar Mohri · Rishab Goel · Yisen Wang · Yifei Wang · Yangguang Zhu · Zhi Wen · Ananda Theertha Suresh · Chengyang Ying · Yujie Wang · Peng Ye · Rui Wang · Nanyi Fei · Hui Chen · Yiwen Guo · Wei Hu · Chenglong Liu · Julien Martel · Yuqi Huo · Wu Yichao · Hang Su · Yisen Wang · Peng Wang · Huajun Chen · Xu Tan · Jun Zhu · Ding Liang · Zhiwu Lu · Joumana Ghosn · Shanshan Zhang · Wei Ye · Ze Cheng · Shikun Zhang · Tao Qin · Tie-Yan Liu -
2022 Spotlight: A Unified Hard-Constraint Framework for Solving Geometrically Complex PDEs »
Songming Liu · Hao Zhongkai · Chengyang Ying · Hang Su · Jun Zhu · Ze Cheng -
2022 Spotlight: Lightning Talks 5B-4 »
Yuezhi Yang · Zeyu Yang · Yong Lin · Yishi Xu · Linan Yue · Tao Yang · Weixin Chen · Qi Liu · Jiaqi Chen · Dongsheng Wang · Baoyuan Wu · Yuwang Wang · Hao Pan · Shengyu Zhu · Zhenwei Miao · Yan Lu · Lu Tan · Bo Chen · Yichao Du · Haoqian Wang · Wei Li · Yanqing An · Ruiying Lu · Peng Cui · Nanning Zheng · Li Wang · Zhibin Duan · Xiatian Zhu · Mingyuan Zhou · Enhong Chen · Li Zhang -
2022 Spotlight: DARE: Disentanglement-Augmented Rationale Extraction »
Linan Yue · Qi Liu · Yichao Du · Yanqing An · Li Wang · Enhong Chen -
2022 Spotlight: Hierarchical Graph Transformer with Adaptive Node Sampling »
ZAIXI ZHANG · Qi Liu · Qingyong Hu · Chee-Kong Lee -
2022 Workshop: New Frontiers in Graph Learning »
Jiaxuan You · Marinka Zitnik · Rex Ying · Yizhou Sun · Hanjun Dai · Stefanie Jegelka -
2022 Workshop: AI for Science: Progress and Promises »
Yi Ding · Yuanqi Du · Tianfan Fu · Hanchen Wang · Anima Anandkumar · Yoshua Bengio · Anthony Gitter · Carla Gomes · Aviv Regev · Max Welling · Marinka Zitnik -
2022 Poster: OpenXAI: Towards a Transparent Evaluation of Model Explanations »
Chirag Agarwal · Satyapriya Krishna · Eshika Saxena · Martin Pawelczyk · Nari Johnson · Isha Puri · Marinka Zitnik · Himabindu Lakkaraju -
2022 Poster: Self-Supervised Contrastive Pre-Training For Time Series via Time-Frequency Consistency »
Xiang Zhang · Ziyuan Zhao · Theodoros Tsiligkaridis · Marinka Zitnik -
2021 Workshop: AI for Science: Mind the Gaps »
Payal Chandak · Yuanqi Du · Tianfan Fu · Wenhao Gao · Kexin Huang · Shengchao Liu · Ziming Liu · Gabriel Spadon · Max Tegmark · Hanchen Wang · Adrian Weller · Max Welling · Marinka Zitnik -
2021 Poster: Motif-based Graph Self-Supervised Learning for Molecular Property Prediction »
ZAIXI ZHANG · Qi Liu · Hao Wang · Chengqiang Lu · Chee-Kong Lee -
2020 Poster: Open Graph Benchmark: Datasets for Machine Learning on Graphs »
Weihua Hu · Matthias Fey · Marinka Zitnik · Yuxiao Dong · Hongyu Ren · Bowen Liu · Michele Catasta · Jure Leskovec -
2020 Poster: Graph Meta Learning via Local Subgraphs »
Kexin Huang · Marinka Zitnik -
2020 Spotlight: Open Graph Benchmark: Datasets for Machine Learning on Graphs »
Weihua Hu · Matthias Fey · Marinka Zitnik · Yuxiao Dong · Hongyu Ren · Bowen Liu · Michele Catasta · Jure Leskovec -
2020 Poster: GNNGuard: Defending Graph Neural Networks against Adversarial Attacks »
Xiang Zhang · Marinka Zitnik -
2020 Poster: Subgraph Neural Networks »
Emily Alsentzer · Samuel Finlayson · Michelle Li · Marinka Zitnik -
2020 Demonstration: MolDesigner: Interactive Design of Efficacious Drugs with Deep Learning »
Kexin Huang · Tianfan Fu · Dawood Khan · Ali Abid · Ali Abdalla · Abubaker Abid · Lucas Glass · Marinka Zitnik · Cao Xiao · Jimeng Sun -
2020 Poster: Sampling-Decomposable Generative Adversarial Recommender »
Binbin Jin · Defu Lian · Zheng Liu · Qi Liu · Jianhui Ma · Xing Xie · Enhong Chen