Timezone: »
Pseudo labeling (PL) is a wide-applied strategy to enlarge the labeled dataset by self-annotating the potential samples during the training process. Several works have shown that it can improve the graph learning model performance in general. However, we notice that the incorrect labels can be fatal to the graph training process. Inappropriate PL may result in the performance degrading, especially on graph data where the noise can propagate. Surprisingly, the corresponding error is seldom theoretically analyzed in the literature. In this paper, we aim to give deep insights of PL on graph learning models. We first present the error analysis of PL strategy by showing that the error is bounded by the confidence of PL threshold and consistency of multi-view prediction. Then, we theoretically illustrate the effect of PL on convergence property. Based on the analysis, we propose a cautious pseudo labeling methodology in which we pseudo label the samples with highest confidence and multi-view consistency. Finally, extensive experiments demonstrate that the proposed strategy improves graph learning process and outperforms other PL strategies on link prediction and node classification tasks.
Author Information
Botao WANG (Hong Kong University of Science and Technology)
He received a Bachelor's and a Master's degree in Electrical Engineering from Xi'an Jiaotong University. He is now a PhD candidate of Data Science and Analytics in Hong Kong University of Science and Technology, supervised by Prof. Fugee Tsung and Prof. Wenjia Wang. His current research interests include industrial big data, anomaly detection and graph learning.
Jia Li
Yang Liu (HKUST)
Jiashun Cheng (Hong Kong University of Science and Technology)
Yu Rong (Shenzhen Tencent Computer System Co., Ltd.)
Wenjia Wang (SAMSI)
Fugee Tsung (Hong Kong University of Science and Technology)
More from the Same Authors
-
2022 Poster: Equivariant Graph Hierarchy-Based Neural Networks »
Jiaqi Han · Wenbing Huang · Tingyang Xu · Yu Rong -
2022 : Equivariant Graph Hierarchy-based Neural Networks »
Jiaqi Han · Yu Rong · Tingyang Xu · Wenbing Huang -
2023 : Long-Range Neural Atom Learning for Molecular Graphs »
Xuan Li · Zhanke Zhou · Jiangchao Yao · Yu Rong · Lu Zhang · Bo Han -
2023 Poster: GADBench: Revisiting and Benchmarking Supervised Graph Anomaly Detection »
Jianheng Tang · Fengrui Hua · Ziqi Gao · Peilin Zhao · Jia Li -
2023 Poster: Constrained Policy Optimization with Explicit Behavior Density For Offline Reinforcement Learning »
Jing Zhang · Chi Zhang · Wenjia Wang · Bingyi Jing -
2023 Poster: Complexity Matters: Rethinking the Latent Space for Generative Modeling »
Tianyang Hu · Fei Chen · Haonan Wang · Jiawei Li · Wenjia Wang · Jiacheng Sun · Zhenguo Li -
2023 Poster: Equivariant Spatio-Temporal Attentive Graph Networks to Simulate Physical Dynamics »
Liming Wu · Zhichao Hou · Jirui Yuan · Yu Rong · Wenbing Huang -
2022 Spotlight: Lightning Talks 5A-4 »
Yangrui Chen · Zhiyang Chen · Liang Zhang · Hanqing Wang · Jiaqi Han · Shuchen Wu · shaohui peng · Ganqu Cui · Yoav Kolumbus · Noemi Elteto · Xing Hu · Anwen Hu · Wei Liang · Cong Xie · Lifan Yuan · Noam Nisan · Wenbing Huang · Yousong Zhu · Ishita Dasgupta · Luc V Gool · Tingyang Xu · Rui Zhang · Qin Jin · Zhaowen Li · Meng Ma · Bingxiang He · Yangyi Chen · Juncheng Gu · Wenguan Wang · Ke Tang · Yu Rong · Eric Schulz · Fan Yang · Wei Li · Zhiyuan Liu · Jiaming Guo · Yanghua Peng · Haibin Lin · Haixin Wang · Qi Yi · Maosong Sun · Ruizhi Chen · Chuan Wu · Chaoyang Zhao · Yibo Zhu · Liwei Wu · xishan zhang · Zidong Du · Rui Zhao · Jinqiao Wang · Ling Li · Qi Guo · Ming Tang · Yunji Chen -
2022 Spotlight: Equivariant Graph Hierarchy-Based Neural Networks »
Jiaqi Han · Wenbing Huang · Tingyang Xu · Yu Rong -
2022 Spotlight: Lightning Talks 2B-3 »
Jie-Jing Shao · Jiangmeng Li · Jiashuo Liu · Zongbo Han · Tianyang Hu · Jiayun Wu · Wenwen Qiang · Jun WANG · Zhipeng Liang · Lan-Zhe Guo · Wenjia Wang · Yanan Zhang · Xiao-wen Yang · Fan Yang · Bo Li · Wenyi Mo · Zhenguo Li · Liu Liu · Peng Cui · Yu-Feng Li · Changwen Zheng · Lanqing Li · Yatao Bian · Bing Su · Hui Xiong · Peilin Zhao · Bingzhe Wu · Changqing Zhang · Jianhua Yao -
2022 Spotlight: Understanding Square Loss in Training Overparametrized Neural Network Classifiers »
Tianyang Hu · Jun WANG · Wenjia Wang · Zhenguo Li -
2022 Poster: Understanding Square Loss in Training Overparametrized Neural Network Classifiers »
Tianyang Hu · Jun WANG · Wenjia Wang · Zhenguo Li -
2021 Poster: Not All Low-Pass Filters are Robust in Graph Convolutional Networks »
Heng Chang · Yu Rong · Tingyang Xu · Yatao Bian · Shiji Zhou · Xin Wang · Junzhou Huang · Wenwu Zhu -
2020 Poster: Dirichlet Graph Variational Autoencoder »
Jia Li · Jianwei Yu · Jiajin Li · Honglei Zhang · Kangfei Zhao · Yu Rong · Hong Cheng · Junzhou Huang -
2020 Poster: Self-Supervised Graph Transformer on Large-Scale Molecular Data »
Yu Rong · Yatao Bian · Tingyang Xu · Weiyang Xie · Ying Wei · Wenbing Huang · Junzhou Huang -
2020 Poster: Deep Multimodal Fusion by Channel Exchanging »
Yikai Wang · Wenbing Huang · Fuchun Sun · Tingyang Xu · Yu Rong · Junzhou Huang -
2018 Poster: Adaptive Sampling Towards Fast Graph Representation Learning »
Wenbing Huang · Tong Zhang · Yu Rong · Junzhou Huang