Timezone: »
Machine learning force fields (MLFFs) have instigated a groundbreaking shift in molecular dynamics (MD) simulations across a wide range of fields, such as physics, chemistry, biology, and materials science. Incorporating higher order many-body interactions can enhance the expressiveness and accuracy of models. Recent models have achieved this by explicitly including up to four-body interactions. However, five-body interactions, which have relevance in various fields, are still challenging to incorporate efficiently into MLFFs. In this work, we propose the quintuple network (QuinNet), an end-to-end graph neural network that efficiently expresses many-body interactions up to five-body interactions with \emph{ab initio} accuracy. By analyzing the topology of diverse many-body interactions, we design the model architecture to efficiently and explicitly represent these interactions. We evaluate QuinNet on public datasets of small molecules, such as MD17 and its revised version, and show that it is compatible with other state-of-the-art models on these benchmarks. Moreover, QuinNet surpasses many leading models on larger and more complex molecular systems, such as MD22 and Chignolin, without increasing the computational complexity. We also use QuinNet as a force field for molecular dynamics (MD) simulations to demonstrate its accuracy and stability, and conduct an ablation study to elucidate the significance of five-body interactions. We open source our implementation at https://github.com/Zun-Wang/QuinNet.
Author Information
Zun Wang (Microsoft Research)
Guoqing Liu (Microsoft Research AI4Science)
Yichi Zhou (Microsoft)
Tong Wang (Microsoft Research AI4Science)
Bin Shao (Microsoft)
More from the Same Authors
-
2022 : Re-Evaluating Chemical Synthesis Planning Algorithms »
Austin Tripp · Krzysztof Maziarz · Sarah Lewis · Guoqing Liu · Marwin Segler -
2023 : Re-evaluating Retrosynthesis Algorithms with Syntheseus »
Krzysztof Maziarz · Austin Tripp · Austin Tripp · Guoqing Liu · Guoqing Liu · Megan J Stanley · Megan J Stanley · Shufang Xie · Shufang Xie · Piotr Gaiński · Piotr Gaiński · Philipp Seidl · Philipp Seidl · Marwin Segler · Marwin Segler -
2023 Poster: Geometric Transformer with Interatomic Positional Encoding »
Yusong Wang · Shaoning Li · Tong Wang · Bin Shao · Nanning Zheng · Tie-Yan Liu -
2023 Poster: De novo Drug Design using Reinforcement Learning with Multiple GPT Agents »
Xiuyuan Hu · Guoqing Liu · Yang Zhao · Hao Zhang -
2022 : Live Talk by 2nd place Winner: ViSNet Team »
Tong Wang -
2021 Poster: Co-evolution Transformer for Protein Contact Prediction »
He Zhang · Fusong Ju · Jianwei Zhu · Liang He · Bin Shao · Nanning Zheng · Tie-Yan Liu