Timezone: »

 
Poster
Switching Autoregressive Low-rank Tensor Models
Hyun Dong Lee · andrew warrington · Joshua Glaser · Scott Linderman

Thu Dec 14 08:45 AM -- 10:45 AM (PST) @ Great Hall & Hall B1+B2 #438

An important problem in time-series analysis is modeling systems with time-varying dynamics. Probabilistic models with joint continuous and discrete latent states offer interpretable, efficient, and experimentally useful descriptions of such data. Commonly used models include autoregressive hidden Markov models (ARHMMs) and switching linear dynamical systems (SLDSs), each with its own advantages and disadvantages. ARHMMs permit exact inference and easy parameter estimation, but are parameter intensive when modeling long dependencies, and hence are prone to overfitting. In contrast, SLDSs can capture long-range dependencies in a parameter efficient way through Markovian latent dynamics, but present an intractable likelihood and a challenging parameter estimation task. In this paper, we propose switching autoregressive low-rank tensor SALT models, which retain the advantages of both approaches while ameliorating the weaknesses. SALT parameterizes the tensor of an ARHMM with a low-rank factorization to control the number of parameters and allow longer range dependencies without overfitting. We prove theoretical and discuss practical connections between SALT, linear dynamical systems, and SLDSs. We empirically demonstrate quantitative advantages of SALT models on a range of simulated and real prediction tasks, including behavioral and neural datasets. Furthermore, the learned low-rank tensor provides novel insights into temporal dependencies within each discrete state.

Author Information

Hyun Dong Lee (Stanford University)
andrew warrington (stanford university)
Joshua Glaser (Columbia)
Scott Linderman (Stanford University)

More from the Same Authors

  • 2023 Poster: NAS-X: Neural Adaptive Smoothing via Twisting »
    Dieterich Lawson · Michael Li · Scott Linderman
  • 2023 Poster: Convolutional State Space Models for Long-Range Spatiotemporal Modeling »
    Jimmy Smith · Shalini De Mello · Jan Kautz · Scott Linderman · Wonmin Byeon
  • 2022 : Neural encoding and decoding of facial movements »
    Scott Linderman
  • 2022 Poster: SIXO: Smoothing Inference with Twisted Objectives »
    Dieterich Lawson · Allan Raventós · andrew warrington · Scott Linderman
  • 2022 Poster: Distinguishing discrete and continuous behavioral variability using warped autoregressive HMMs »
    Julia Costacurta · Lea Duncker · Blue Sheffer · Winthrop Gillis · Caleb Weinreb · Jeffrey Markowitz · Sandeep R Datta · Alex Williams · Scott Linderman
  • 2020 Poster: Point process models for sequence detection in high-dimensional neural spike trains »
    Alex Williams · Anthony Degleris · Yixin Wang · Scott Linderman
  • 2020 Oral: Point process models for sequence detection in high-dimensional neural spike trains »
    Alex Williams · Anthony Degleris · Yixin Wang · Scott Linderman
  • 2020 Poster: Recurrent Switching Dynamical Systems Models for Multiple Interacting Neural Populations »
    Joshua Glaser · Matthew Whiteway · John Cunningham · Liam Paninski · Scott Linderman
  • 2019 : Poster Session »
    Pravish Sainath · Mohamed Akrout · Charles Delahunt · Nathan Kutz · Guangyu Robert Yang · Joseph Marino · L F Abbott · Nicolas Vecoven · Damien Ernst · andrew warrington · Michael Kagan · Kyunghyun Cho · Kameron Harris · Leopold Grinberg · John J. Hopfield · Dmitry Krotov · Taliah Muhammad · Erick Cobos · Edgar Walker · Jacob Reimer · Andreas Tolias · Alexander Ecker · Janaki Sheth · Yu Zhang · Maciej Wołczyk · Jacek Tabor · Szymon Maszke · Roman Pogodin · Dane Corneil · Wulfram Gerstner · Baihan Lin · Guillermo Cecchi · Jenna M Reinen · Irina Rish · Guillaume Bellec · Darjan Salaj · Anand Subramoney · Wolfgang Maass · Yueqi Wang · Ari Pakman · Jin Hyung Lee · Liam Paninski · Bryan Tripp · Colin Graber · Alex Schwing · Luke Prince · Gabriel Ocker · Michael Buice · Benjamin Lansdell · Konrad Kording · Jack Lindsey · Terrence Sejnowski · Matthew Farrell · Eric Shea-Brown · Nicolas Farrugia · Victor Nepveu · Jiwoong Im · Kristin Branson · Brian Hu · Ramakrishnan Iyer · Stefan Mihalas · Sneha Aenugu · Hananel Hazan · Sihui Dai · Tan Nguyen · Doris Tsao · Richard Baraniuk · Anima Anandkumar · Hidenori Tanaka · Aran Nayebi · Stephen Baccus · Surya Ganguli · Dean Pospisil · Eilif Muller · Jeffrey S Cheng · Gaël Varoquaux · Kamalaker Dadi · Dimitrios C Gklezakos · Rajesh PN Rao · Anand Louis · Christos Papadimitriou · Santosh Vempala · Naganand Yadati · Daniel Zdeblick · Daniela M Witten · Nicholas Roberts · Vinay Prabhu · Pierre Bellec · Poornima Ramesh · Jakob H Macke · Santiago Cadena · Guillaume Bellec · Franz Scherr · Owen Marschall · Robert Kim · Hannes Rapp · Marcio Fonseca · Oliver Armitage · Jiwoong Im · Thomas Hardcastle · Abhishek Sharma · Wyeth Bair · Adrian Valente · Shane Shang · Merav Stern · Rutuja Patil · Peter Wang · Sruthi Gorantla · Peter Stratton · Tristan Edwards · Jialin Lu · Martin Ester · Yurii Vlasov · Siavash Golkar
  • 2019 Workshop: Learning Meaningful Representations of Life »
    Elizabeth Wood · Yakir Reshef · Jonathan Bloom · Jasper Snoek · Barbara Engelhardt · Scott Linderman · Suchi Saria · Alexander Wiltschko · Casey Greene · Chang Liu · Kresten Lindorff-Larsen · Debora Marks
  • 2019 Poster: BehaveNet: nonlinear embedding and Bayesian neural decoding of behavioral videos »
    Eleanor Batty · Matthew Whiteway · Shreya Saxena · Dan Biderman · Taiga Abe · Simon Musall · Winthrop Gillis · Jeffrey Markowitz · Anne Churchland · John Cunningham · Sandeep R Datta · Scott Linderman · Liam Paninski
  • 2019 Poster: Mutually Regressive Point Processes »
    Ifigeneia Apostolopoulou · Scott Linderman · Kyle Miller · Artur Dubrawski